Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-471580

RESUMEN

The continual evolution of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the emergence of variants that show resistance to vaccines and neutralizing antibodies (1-4) threaten to prolong the coronavirus disease 2019 (COVID-19) pandemic (5). Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine learning-guided protein engineering technology, which is used to interrogate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as omicron (B.1.1.529), thus supporting decision making for public heath as well as guiding the development of therapeutic antibody treatments and vaccines for COVID-19.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21262126

RESUMEN

The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants. Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=152 SRC="FIGDIR/small/21262126v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): org.highwire.dtl.DTLVardef@befa4corg.highwire.dtl.DTLVardef@22d496org.highwire.dtl.DTLVardef@b2da7dorg.highwire.dtl.DTLVardef@265657_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGraphical abstractC_FLOATNO DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. C_FIG

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA