Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 951: 175798, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39187090

RESUMEN

The rhizosphere is generally depleted in nutrients, but as a hotspot of microbial activity it fosters crop P uptake. We hypothesized that P contents of water extractable nanoparticles (<0.1 µm) and small sized colloids (<0.45 µm) differ between non-rhizosphere and rhizosphere soil. To test this hypothesis, rhizosphere and non-rhizosphere soils (Luvisol and Cambisol) were sampled at harvest period of winter wheat near Selhausen (Germany). Microaggregate and colloidal fractions in the size range of 53-250 µm, 20-53 µm, 0.45-20 µm, and <0.45 µm were separated by wet-sieving and centrifugation. Subsequently, the colloids <0.45 µm were further isolated in 0.66-20 nm, 20-100 nm and 100-450 nm fractions using asymmetric flow field flow fractionation (AF4) and directly analyzed by online coupled organic carbon detector (OCD) and inductively coupled plasma mass spectrometry (ICP-MS) for element composition. No significant differences (p > 0.05) were measured between rhizosphere and non-rhizosphere soil P contents of microaggregate fractions. The rhizosphere soil, however, showed ∼26 % depletion of average P content in the 0.66-20 nm fraction, which went along with an enrichment of P content of the 100-450 nm fraction by a factor of two. Apparently, P uptake by plants results in a redistribution of P in the rhizosphere, with small nanoparticles providing available P to plants while excess residual P is bound to fine colloids.


Asunto(s)
Coloides , Nanopartículas , Fósforo , Rizosfera , Suelo , Triticum , Suelo/química , Fósforo/análisis , Alemania
2.
Sci Total Environ ; 866: 161439, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36623669

RESUMEN

Subsurface losses of colloidal and truly dissolved phosphorus (P) from arable land can cause ecological damage to surface water. To gain deeper knowledge about subsurface particulate P transport from inland sources to brooks, we studied an artificially drained lowland catchment (1550 ha) in north-eastern Germany. We took daily samples during the winter discharge period 2019/2020 at different locations, i.e., a drain outlet, ditch, and brook, and analyzed them for total P (TPunfiltered), particulate P >750 nm (TP>750 nm), colloidal P (TPcolloids), and truly dissolved P (truly DP) during baseflow conditions and high flow events. The majority of TPunfiltered in the tile drain, ditch, and brook was formed by TP>750 nm (54 to 59 %), followed by truly DP (34 to 38 %) and a small contribution of TPcolloids (5 to 6 %). During flow events, 63 to 66 % of TPunfiltered was present as particulate P (TP>750 nm + TPcolloids), whereas during baseflow the figure was 97 to 99 %; thus, truly DP was almost negligible (1 to 3 % of TPunfiltered) during baseflow. We also found that colloids transported in the water samples have their origin in the water-extractable nanocolloids (0.66 to 20 nm) within the C horizon, which are mainly composed of clay minerals. Along the flow path there is an agglomeration of P-bearing nanocolloids from the soil, with an increasing importance of iron(III) (hydr)oxides over clay particles. Event flow facilitated the transport of greater amounts of larger particles (>750 nm) through the soil matrix. However, the discharge did not exhaust colloid mobilization and colloidal P was exported through the tile-drainage system during the complete runoff period, even under baseflow conditions. Therefore, it is essential that the impact of rainfall intensity and pattern on particulate P discharge be considered more closely so that drainage management can be adjusted to achieve a reduced P export from agricultural land.

3.
New Phytol ; 227(2): 572-587, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32155671

RESUMEN

Soil fungi represent a major component of below-ground biodiversity that determines the succession and recovery of forests after disturbance. However, their successional trajectories and driving mechanisms following wildfire remain unclear. We examined fungal biomass, richness, composition and enzymes across three soil horizons (Oe, A1 and A2) along a near-complete fire chronosequence (1, 2, 8, 14, 30, 49 and c. 260 yr) in cold-temperate forests of the Great Khingan Mountains, China. The importance of soil properties, spatial distance and tree composition were also tested. Ectomycorrhizal fungal richness and ß-glucosidase activity were strongly reduced by burning and significantly increased with 'time since fire' in the Oe horizon but not in the mineral horizons. Time since fire and soil C : N ratio were the primary drivers of fungal composition in the Oe and A1/A2 horizons, respectively. Ectomycorrhizal fungal composition was remarkably sensitive to fire history in the Oe horizon, while saprotroph community was strongly affected by time since fire in the deeper soil horizon and this effect emerged 18 years after fire in the A2 horizon. Our study demonstrates pronounced horizon-dependent successional trajectories following wildfire and indicates interactive effects of time since fire, soil stoichiometry and spatial distance in the reassembly of below-ground fungal communities in a cold and fire-prone region.


Asunto(s)
Suelo , Incendios Forestales , China , Bosques , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA