Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JMIR Public Health Surveill ; 10: e56958, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254571

RESUMEN

Background: Drug users are a high-risk group for HIV infection and are prominent HIV carriers. Given the emergence of new drugs, we explored current drug-using behaviors, HIV infections, and the correlation between drug-using behaviors and HIV infection risk among drug users from 2014 to 2021. Objective: We aimed to identify the prevalence of HIV infection risk among drug users and explore drug use behaviors based on the updated data, which could provide evidence for the precision of HIV prevention strategies among drug users. Methods: Data were collected from sentinel surveillance of drug users in rehabilitation centers and communities in Hangzhou (2014-2021), including sociodemographic characteristics, HIV awareness, drug use, risky sexual behaviors, and HIV infection status. Multivariate logistic regression was used to identify the factors influencing HIV infection and risky sexual behaviors among drug users. Results: In total, 5623 drug users (male: n=4734, 84.19%; age: mean 38.38, SD 9.94 years) were included. New drugs dominated among the participants (n=3674, 65.34%). The main mode of drug use was noninjection (n=4756, 84.58%). Overall, for 27.45% (n=1544) of injected drugs in the last month before the investigation, the average daily injection frequency was 3.10 (SD 8.24). Meanwhile, 3.43% of participants shared needles. The incidence of sexual behaviors after drug use was 33.13% (n=1863), with 35.75% (n=666) of them using a condom in the last time. Overall, 116 participants tested positive for HIV antibodies (infection rate=2.06%). New drug users exhibited more postuse sexual behaviors than traditional drug users (odds ratio [OR] 7.771, 95% CI 6.126-9.856; P<.001). HIV-aware drug users were more likely to engage in risky sexual behaviors (OR 1.624, 95% CI 1.152-2.291; P=.006). New-type drug users were more likely to engage in unprotected sexual behavior (OR 1.457, 95% CI 1.055-2.011; P=.02). Paradoxically, drug users with greater HIV awareness were more prone to engaging in unprotected sexual behavior (OR 5.820, 95% CI 4.650-7.284; P<.001). Women engaged less in unprotected sex than men (OR 0.356, 95% CI 0.190-0.665; P=.001). HIV rates were higher among injecting drug users (OR 2.692, 95% CI 0.995-7.287; P=.04) and lower among drug users who used condoms during recent sex than those who did not (OR 0.202, 95% CI 0.076-0.537; P=.001). Higher education levels were associated with higher HIV infection rates. However, there was no significant correlation between HIV cognition level and HIV infection. Conclusions: New drug types and noninjection were the main patterns in last 7 years. Using new types of drugs, rather than traditional drugs, was associated with an increased risk of HIV infection. Injection drug use was a risk factor for HIV infection. HIV awareness among drug users was high, but the incidence of risky sexual behaviors remained high. Therefore, it is important to promote the behavioral transformation of high-risk populations from cognition to attitude, and then to taking protective measures.


Asunto(s)
Consumidores de Drogas , Infecciones por VIH , Asunción de Riesgos , Trastornos Relacionados con Sustancias , Humanos , Masculino , China/epidemiología , Infecciones por VIH/epidemiología , Estudios Transversales , Femenino , Adulto , Consumidores de Drogas/estadística & datos numéricos , Consumidores de Drogas/psicología , Persona de Mediana Edad , Trastornos Relacionados con Sustancias/epidemiología , Prevalencia , Factores de Riesgo , Conducta Sexual/estadística & datos numéricos , Adulto Joven , Vigilancia de Guardia , Adolescente
2.
Research (Wash D C) ; 7: 0440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114488

RESUMEN

The identification of aging- and longevity-associated genes is important for promoting healthy aging. By analyzing a large cohort of Chinese centenarians, we previously found that single-nucleotide polymorphisms (SNPs) in the SLC39A11 gene (also known as ZIP11) are associated with longevity in males. However, the function of the SLC39A11 protein remains unclear. Here, we found that SLC39A11 expression is significantly reduced in patients with Hutchinson-Gilford progeria syndrome (HGPS). In addition, we found that zebrafish with a mutation in slc39a11 that significantly reduces its expression have an accelerated aging phenotype, including a shortened average lifespan, muscle atrophy and reduced swimming, impaired muscle regeneration, gut damage, and abnormal morphology in the reproductive system. Interestingly, these signs of premature aging were more pronounced in male zebrafish than in females. RNA-sequencing analysis revealed that cellular senescence may serve as a potential mechanism for driving this slc39a11 deficiency-induced phenotype in mutant zebrafish. Moreover, immunofluorescence showed significantly increased DNA damage and reactive oxygen species signaling in slc39a11 mutant zebrafish. Using inductively coupled plasma mass spectrometry (ICP-MS), we found that manganese significantly accumulates in slc39a11 mutant zebrafish, as well as in the serum of both global Slc39a11 knockout and hepatocyte-specific Slc39a11 knockout mice, suggesting that this metal transporter regulates systemic manganese levels. Finally, using cultured human fibroblasts, we found that both knocking down SLC39A11 and exposure to high extracellular manganese increased cellular senescence. These findings provide compelling evidence that SLC39A11 serves to protect against the aging process, at least in part by regulating cellular manganese homeostasis.

3.
Sci Rep ; 14(1): 14056, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890390

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by pulmonary vascular remolding and occlusion, leading to the elevated pulmonary arterial pressures, right ventricular hypertrophy, and eventual heart failure if left untreated. Understanding the molecular mechanisms underlying the development and progression of pulmonary hypertension (PH) is crucial for devising efficient therapeutic approaches for the disease. Lung homogenates were collected weekly and underwent RNA-sequencing in the monocrotaline (MCT)-induced PH rat model to explore genes associated with PH progression. Statistical analyses revealed 1038, 1244, and 3125 significantly altered genes (P < 0.05, abs (log2fold change) > log21.5) between control and MCT-exposed rats during the first, second, and third week, respectively. Pathway enrichment analyses revealed involvement of cell cycle and innate immune system for the upregulated genes, GPCR and VEGF signaling for the downregulated genes. Furthermore, qRT-PCR validated upregulation of representative genes associated with cell cycle including Cdc25c (cell division cycle 25C), Cdc45, Top2a (topoisomerase IIα), Ccna2 (cyclin A2) and Ccnb1 (cyclin B1). Western blot and immunofluorescence analysis confirmed increases in PCNA, Ccna2, Top2a, along with other proliferation markers in the lung tissue of MCT-treated rats. In summary, RNA sequencing data highlights the significance of cell proliferation in progression of rodent PH.


Asunto(s)
Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Hipertensión Pulmonar , Monocrotalina , Animales , Ratas , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Masculino , Ratas Sprague-Dawley , Transcriptoma , Pulmón/patología , Pulmón/metabolismo
4.
J Proteome Res ; 23(1): 264-276, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015796

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease that affects both the lungs and heart. Right ventricle (RV) hypertrophy is a primary pathological feature of PAH; however, its underlying molecular mechanisms remain insufficiently studied. In this study, we employed tandem mass tag (TMT)-based quantitative proteomics for the integrative analysis of the proteome and phosphoproteome of the RV derived from monocrotaline-induced PAH model rats. Compared with control samples, 564 significantly upregulated proteins, 616 downregulated proteins, 622 downregulated phosphopeptides, and 683 upregulated phosphopeptides were identified (P < 0.05, abs (log2 (fold change)) > log2 1.2) in the MCT samples. The quantitative real-time polymerase chain reaction (qRT-PCR) validated the expression levels of top 20 significantly altered proteins, including Nppa (natriuretic peptides A), latent TGF-ß binding protein 2 (Ltbp2), periostin, connective tissue growth factor 2 (Ccn2), Ncam1 (neural cell adhesion molecule), quinone reductase 2 (Nqo2), and tropomodulin 4 (Tmod4). Western blotting confirmed the upregulation of Ncam1 and downregulation of Nqo2 and Tmod4 in both MCT-induced and hypoxia-induced PH rat models. Pathway enrichment analyses indicated that the altered proteins are associated with pathways, such as vesicle-mediated transport, actin cytoskeleton organization, TCA cycle, and respiratory electron transport. These significantly changed phosphoproteins were enriched in pathways such as diabetic cardiomyopathy, hypertrophic cardiomyopathy, glycolysis/gluconeogenesis, and cardiac muscle contraction. In summary, this study provides an initial analysis of the RV proteome and phosphoproteome in the progression of PAH, highlighting several RV dysfunction-associated proteins and pathways.


Asunto(s)
Hipertensión Pulmonar , Ratas , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/metabolismo , Proteoma/genética , Fosfopéptidos , Proteómica
5.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298580

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by elevated pulmonary vascular resistance and increased pressure in the distal pulmonary arteries. Systematic analysis of the proteins and pathways involved in the progression of PAH is crucial for understanding the underlying molecular mechanism. In this study, we performed tandem mass tags (TMT)-based relative quantitative proteomic profiling of lung tissues from rats treated with monocrotaline (MCT) for 1, 2, 3 and 4 weeks. A total of 6759 proteins were quantified, among which 2660 proteins exhibited significant changes (p-value < 0.05, fold change < 0.83 or >1.2). Notably, these changes included several known PAH-related proteins, such as Retnla (resistin-like alpha) and arginase-1. Furthermore, the expression of potential PAH-related proteins, including Aurora kinase B and Cyclin-A2, was verified via Western blot analysis. In addition, we performed quantitative phosphoproteomic analysis on the lungs from MCT-induced PAH rats and identified 1412 upregulated phosphopeptides and 390 downregulated phosphopeptides. Pathway enrichment analysis revealed significant involvement of pathways such as complement and coagulation cascades and the signaling pathway of vascular smooth muscle contraction. Overall, this comprehensive analysis of proteins and phosphoproteins involved in the development and progression of PAH in lung tissues provides valuable insights for the development of potential diagnostic and treatment targets for PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratas , Animales , Hipertensión Pulmonar/metabolismo , Fosfopéptidos , Proteómica , Pulmón/metabolismo , Arteria Pulmonar/metabolismo , Hipertensión Pulmonar Primaria Familiar , Modelos Animales de Enfermedad
6.
Proteomes ; 10(3)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35893764

RESUMEN

Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the main causes of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Hypoxia is an important factor related to PAH and can induce the excessive proliferation of PASMCs and inhibit apoptosis. To explore the possible mechanism of hypoxia-related PAH, human PASMCs are exposed to hypoxia for 24 h and tandem mass tag (TMT)-based quantitative proteomic and phosphoproteomic analyses are performed. Proteomic analysis revealed 134 proteins are significantly changed (p < 0.05, |log2 (fold change)| > log2 [1.1]), of which 48 proteins are upregulated and 86 are downregulated. Some of the changed proteins are verified by using qRT-PCR and Western blotting. Phosphoproteomic analysis identified 404 significantly changed (p < 0.05, |log2 (fold change)| > log2 [1.1]) phosphopeptides. Among them, 146 peptides are upregulated while 258 ones are downregulated. The kinase-substrate enrichment analysis revealed kinases such as P21 protein-activated kinase 1/2/4 (PAK1/2/4), protein-kinase cGMP-dependent 1 and 2 (PRKG1/2), and mitogen-activated protein-kinase 4/6/7 (MAP2K4/6/7) are significantly enriched and activated. For all the significantly changed proteins or phosphoproteins, a comprehensive pathway analysis is performed. In general, this study furthers our understanding of the mechanism of hypoxia-induced PAH.

7.
JACC Asia ; 2(7): 787-802, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36713766

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive and fatal disease. Sustained pulmonary vasoconstriction and concentric pulmonary vascular remodeling contribute to the elevated pulmonary vascular resistance and pulmonary artery pressure in PAH. Endothelial cells regulate vascular tension by producing endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs). Homeostasis of EDRF and EDCF production has been identified as a marker of the endothelium integrity. Impaired synthesis or release of EDRFs induces persistent vascular contraction and pulmonary artery remodeling, which subsequently leads to the development and progression of PAH. In this review, the authors summarize how EDRFs and EDCFs affect pulmonary vascular homeostasis, with special attention to the recently published novel mechanisms related to endothelial dysfunction in PAH and drugs associated with EDRFs and EDCFs.

8.
Front Pharmacol ; 12: 758763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858182

RESUMEN

Rationale: Enhanced proliferation and distal migration of human pulmonary arterial smooth muscle cells (hPASMCs) both contribute to the progressive increases in pulmonary vascular remodeling and resistance in pulmonary arterial hypertension (PAH). Our previous studies revealed that Rictor deletion, to disrupt mTOR Complex 2 (mTORC2), over longer periods result in a paradoxical rise in platelet-derived growth factor receptor (PDGFR) expression in PASMCs. Thus, the purpose of this study was to evaluate the role of combination therapy targeting both mTOR signaling with PDGFR inhibition to attenuate the development and progression of PAH. Methods and Results: Immunoblotting analyses revealed that short-term exposure to rapamycin (6h) significantly reduced phosphorylation of p70S6K (mTORC1-specific) in hPASMCs but had no effect on the phosphorylation of AKT (p-AKT S473, considered mTORC2-specific). In contrast, longer rapamycin exposure (>24 h), resulted in differential AKT (T308) and AKT (S473) phosphorylation with increases in phosphorylation of AKT at T308 and decreased phosphorylation at S473. Phosphorylation of both PDGFRα and PDGFRß was increased in hPASMCs after treatment with rapamycin for 48 and 72 h. Based on co-immunoprecipitation studies, longer exposure to rapamycin (24-72 h) significantly inhibited the binding of mTOR to Rictor, mechanistically suggesting mTORC2 inhibition by rapamycin. Combined exposure of rapamycin with the PDGFR inhibitor, imatinib significantly reduced the proliferation and migration of hPASMCs compared to either agent alone. Pre-clinical studies validated increased therapeutic efficacy of rapamycin combined with imatinib in attenuating PAH over either drug alone. Specifically, combination therapy further attenuated the development of monocrotaline (MCT)- or Hypoxia/Sugen-induced pulmonary hypertension (PH) in rats as demonstrated by further reductions in the Fulton index, right ventricular systolic pressure (RVSP), pulmonary vascular wall thickness and vessel muscularization, and decreased proliferating cell nuclear antigen (PCNA) staining in PASMCs. Conclusion: Prolonged rapamycin treatment activates PDGFR signaling, in part, via mTORC2 inhibition. Combination therapy with rapamycin and imatinib may be a more effective strategy for the treatment of PAH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA