Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IBRO Neurosci Rep ; 17: 145-153, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39206162

RESUMEN

Background: To construct a diagnostic model for Bipolar Disorder (BD) depressive phase using peripheral tissue RNA data from patients and combining Random Forest with Feedforward Neural Network methods. Methods: Datasets GSE23848, GSE39653, and GSE69486 were selected, and differential gene expression analysis was conducted using the limma package in R. Key genes from the differentially expressed genes were identified using the Random Forest method. These key genes' expression levels in each sample were used to train a Feedforward Neural Network model. Techniques like L1 regularization, early stopping, and dropout layers were employed to prevent model overfitting. Model performance was then validated, followed by GO, KEGG, and protein-protein interaction network analyses. Results: The final model was a Feedforward Neural Network with two hidden layers and two dropout layers, comprising 2345 trainable parameters. Model performance on the validation set, assessed through 1000 bootstrap resampling iterations, demonstrated a specificity of 0.769 (95 % CI 0.571-1.000), sensitivity of 0.818 (95 % CI 0.533-1.000), AUC value of 0.832 (95 % CI 0.642-0.979), and accuracy of 0.792 (95 % CI 0.625-0.958). Enrichment analysis of key genes indicated no significant enrichment in any known pathways. Conclusion: Key genes with biological significance were identified based on the decrease in Gini coefficient within the Random Forest model. The combined use of Random Forest and Feedforward Neural Network to establish a diagnostic model showed good classification performance in Bipolar Disorder.

2.
J Neural Eng ; 18(4)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34311452

RESUMEN

Objective.The original motor imagery electroencephalography (MI-EEG) data contains not only temporal features but also a large number of spatial features related to the distribution of electrodes on the brain. However, in the process of MI-EEG decoding, most of the current convolutional neural network (CNN) based methods do not make the utmost of the spatial features related to electrode distribution.Approach.In this study, we adopt a concise 3D representation for the MI-EEG data to take full advantage of the spatial features and propose a two-branch 3D CNN (TB-3D CNN) for the 3D representation of MI-EEG data. First, the spatial and temporal features of the input 3D samples are extracted by the spatial and temporal feature learning branches, respectively, to avoid the mutual interference between the temporal and spatial features. Then, the central loss is introduced into the TB-3D CNN framework to further improve the MI-EEG decoding accuracy. And a 3D data augmentation method based on the cyclic translation of time dimension is proposed for the 3D representation method to alleviate the overfitting problem.Main results.Some experiments are conducted on the famous BCI competition IV 2a dataset to evaluate the effectiveness of the proposed MI-EEG decoding method. The experimental results comparison with some state-of-the-art methods demonstrates that the average accuracy of our method is 4.42% higher than that of the best of the comparative methods.Significance.The proposed MI-EEG decoding method has great promise to improve the performance of motor imagery brain-computer interface system.


Asunto(s)
Algoritmos , Imaginación , Electroencefalografía , Redes Neurales de la Computación , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA