Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(23): 28731-28738, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37272915

RESUMEN

Plasmonic tweezers based on periodic nanostructures have been used to manipulate particles through multiple and uniform local surface plasmon (LSP) fields. However, the coverage area of periodic nanostructures is limited, which restricts the range of trapping and manipulation. In this paper, we present a novel approach to achieve large-scale manipulation and trapping of microspheres by uniformly coupled LSP fields on a short-range disordered self-assembled Ag nanoplates (DSNP) film. The DSNP film is prepared by simple and low-cost methods─chemical growth and self-assembly technique, which overcome the challenges of preparing periodic nanostructures with a large coverage area. The uniform and coupled plasmon fields generated by this film provide enhanced electrodynamic interactions with particles, enabling the non-invasive and repeatable trapping of particles in solution. Utilizing sensitive LSPRs, dynamic manipulating particles was achieved by controlling the laser position. This large-scale platform of stable manipulation enabled by the DSNP film opens up new possibilities for the trapping and manipulation of nanoparticles in a variety of applications.

2.
Opt Express ; 31(26): 44177-44189, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178495

RESUMEN

Plasmonic tweezers break the diffraction limit and enable trap the deep-subwavelength particles. However, the innate scattering properties and the photothermal effect of metal nanoparticles pose challenges to their effective trapping and the non-damaging trapping of biomolecules. In this study, we investigate the enhanced trapping properties induced by strong coupling between localized surface plasmon resonances (LSPR) and excitons in plasmonic tweezers. The LSPR-exciton strong coupling exhibits an anticrossing behavior in dispersion curves with a markable Rabi splitting of 196 meV. Plasmonic trapping forces on excitons experience a significant increase within this strong coupling system due to higher longitudinal enhancement of electric field enhancement, which enables efficient particle trapping using lower laser power and minimizes ohmic heat generation. Moreover, leveraging strong coupling effects allows the successful trapping of a 50 nm Au particle coated with J-aggregates, overcoming previous limitations associated with scattering characteristics and smaller size that hindered effective metal nanoparticle manipulation. These findings open up new possibilities for the nondestructive trapping of biomolecules and metal nanoparticles across various applications.

3.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364670

RESUMEN

At present, the use of efficient and cost-effective methods to construct plasmonic surface-enhanced Raman scattering (SERS) substrates of high sensitivity, uniformity and reproducibility is still crucial to satisfy the practical application of SERS technology. In this paper, a localized surface plasmonic resonance (LSPR) tunable flexible Ag@PDMS substrate was successfully constructed by the low-cost bio-template-stripping method and magnetron sputtering technology. The theory proves that the local electromagnetic field enhancement and "hot spot" distribution is adjustable by modifying the size of the optical cavity unit in the periodicity nanocavity array structure. Experimentally, using rhodamine 6G (R6G) as the target analyte, the SERS performance of optimal Ag@PDMS substrate (Ag film thickness for 315 nm) was researched in detail, which the minimum detection limit was 10-11 M and the enhancement factor was calculated as 8.03 × 108, indicating its high sensitivity. The relative standard deviation (RSD) was calculated as 10.38%, showing that the prepared substrate had excellent electromagnetic field enhancement uniformity. At last, the trace detection of Crystal violet (CV, LOD = 10-9 M) and the simultaneous detection of three common dyes (R6G, CV and Methylene blue (MB) mixture) were also realized. This result suggests that the SERS substrate has a good application prospect in the quantitative and qualitative detection of dye molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA