Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 838(Pt 1): 156006, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35595146

RESUMEN

Urban intersection has been identified as a major contributor to the total personal exposure and short-term high exposure of particulate matter (PM) in modern cities. The main aim of this study was to get a better understanding of the determinants of traffic-related PM temporal variations and personal exposure to PMs at a viaduct-covered intersection controlled by traffic signals during the winter haze episodes. A two-day field sampling campaign was conducted with a portable device during evening rush hour and measured the PMs in the 0.3-10 µm size range both on the surface crosswalk and underground passage. PM variations and related cumulative respiratory deposition dose (RDD) along two routes with six road crossing scenarios were estimated on a severe pollution day and a typical day for both adults and children, respectively. The PM concentration on the severe pollution day ranged 59.2-67.9 µg/m3 for PM1, 163.8-257.0 µg/m3 for PM2, and 258.2-469.1 µg/m3 for PM10, respectively, as compared to 47.9-57.9 µg/m3for PM1, 112.7-199.8 µg/m3 for PM2, and 151.0-301.0 µg/m3 for PM10 on the typical day, respectively. The variability could be explained largely by the built-up environment, traffic component, signal setting, and ventilation condition. Our data suggest that an appropriate setting of the traffic signal would help reduce the personal exposure dose on the surface crosswalk at urban intersections and the ventilation condition had a significant influence on local PM distributions inside the underground passage. Results here provide possible suggestions for the future design of a walkable city.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Niño , Ciudades , Monitoreo del Ambiente/métodos , Contaminación Ambiental , Humanos , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año
2.
Materials (Basel) ; 14(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34639879

RESUMEN

Sugar alcohols are phase-change materials with various advantages but may suffer from leakage during applications. In this study, inositol nanocapsules were synthesized at various conditions, including the amount of precursors and the time for adding the precursors. The effects of synthesis conditions on the properties of the nanocapsules were studied. The morphology, chemical composition, microstructure, phase-change characteristics and size distribution of the nanocapsules were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), differential scanning calorimeter (DSC) and a zeta potential analyzer. The results confirm that inositol was well-encapsulated by an SiO2 shell. The shell thickness increased, while the supercooling degree of the nanocapsules decreased with increasing time for adding the precursors. In order to obtain nanocapsules with good morphology and phase-change characteristics, the time for adding the precursors should increase with the amount of precursors. The nanocapsules with the best properties exhibited high melting enthalpy, encapsulation ratio and energy storage efficiency of 216.0 kJ/kg, 83.1% and 82.1%, respectively. The size of the nanocapsules was remarkably affected by the triethoxysilane (TES) amount.

3.
J Environ Manage ; 238: 257-262, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30852402

RESUMEN

A facile one-step microwave-assisted method was proposed for kaolinite intercalation and grafting. The structure, morphology, composition, and size distribution of kaolinite sheets were investigated using various methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis. The potential application of the modified kaolinite as an oil/water emulsion stabilizer was studied. The results verified that intact kaolinite sheets were obtained. The dodecane/water emulsion stabilized by the modified kaolinite remained stable for more than 60 days. The effective performance suggests that the effectiveness of the proposed kaolinite modification method may be useful for Pickering emulsion stabilization in oil recovery applications.


Asunto(s)
Caolín , Microondas , Emulsiones , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
4.
Nanoscale Res Lett ; 13(1): 145, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29748839

RESUMEN

Nanoparticles, including Al2O3 and SiO2, and ultrasound were adopted to improve the solidification properties of water. The effects of nanoparticle concentration, contact angle, and ultrasonic intensity on the supercooling degree of water were investigated, as well as the dispersion stability of nanoparticles in water during solidification. Experimental results show that the supercooling degree of water is reduced under the combined effect of ultrasound and nanoparticles. Consequently, the reduction of supercooling degree increases with the increase of ultrasonic intensity and nanoparticle concentration and decrease of contact angle of nanoparticles. Moreover, the reduction of supercooling degree caused by ultrasound and nanoparticles together do not exceed the sum of the supercooling degree reductions caused by ultrasound and nanoparticles separately; the reduction is even smaller than that caused by ultrasound individually under certain conditions of controlled nanoparticle concentration and contact angle and ultrasonic intensity. The dispersion stability of nanoparticles during solidification can be maintained only when the nanoparticles and ultrasound together show a superior effect on reducing the supercooling degree of water to the single operation of ultrasound. Otherwise, the aggregation of nanoparticles appears in water solidification, which results in failure. The relationships among the meaningful nanoparticle concentration, contact angle, and ultrasonic intensity, at which the requirements of low supercooling and high stability could be satisfied, were obtained. The control mechanisms for these phenomena were analyzed.

5.
Sci Rep ; 5: 13357, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26278332

RESUMEN

We designed a two-step Pickering emulsification procedure to create nano-encapsulated phase changing materials (NEPCMs) using a method whose simplicity and low energy consumption suggest promise for scale-up and mass production. Surface-modified amphiphilic zirconium phosphate (ZrP) platelets were fabricated as the Pickering emulsifiers, nonadecane was chosen as the core phase change material (PCM), and polystyrene, the shell material. The resultant capsules were submicron in size with remarkable uniformity in size distribution, which has rarely been reported. Differential scanning calorimetry (DSC) characterization showed that the capsulation efficiency of NEPCMs, and they were found to be thermal stable, as characterized by the DSC data for the sample after 200 thermal cycles. NEPCMs exhibit superior mechanical stability and mobility when compared with the well-developed micro-encapsulated phase change materials (MEPCMs). NEPCMs find useful applications in thermal management, including micro-channel coolants; solar energy storage media; building temperature regulators; and thermal transfer fabrics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA