Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 342: 140091, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678591

RESUMEN

Numerous studies have focused on the spectral characteristics and seasonal variations of dissolved organic matter (DOM) in rainwater. However, the relationship between the optical indices of DOM and nutrients in rainwater from different ecological areas of large reservoirs is poorly understood. A one-year monitoring study was conducted between March 2019 and February 2020 in the Danjiangkou Reservoir in Henan Province, China, to compare the composition, spectral characteristic parameters, and relationship between the optical indices of DOM and nutrients in rainwater under different ecological environments. The study showed that the average value of a300 in all samples was 5.29 ± 2.16 m-1 and showed a seasonal trend of higher in spring and winter and lower in summer and autumn as well as a regional difference of agricultural area > urban area > reservoir area. A three-dimensional fluorescence with parallel factor analysis (EEM-PARAFAC) revealed four components of the rainwater: C1 and C2 as UV humic-like substances, and C3 and C4 as protein-like substances. The protein-like components of rainwater from agricultural areas had a high fluorescence intensity, whereas the UV humic-like components of rainfall from urban and reservoir areas had a high fluorescence intensity. Analysis of the fluorescence indices showed that rainwater DOM humification was low and had a strong endogenous character in the Danjiangkou Reservoir. The redundancy analysis revealed that NO3--N, DTN, and SO42- mainly influenced the DOM optical indices of rainwater in urban areas, EC, DTN, and DOC had the highest interpretation of the DOM optical indices of rainwater in agricultural areas, and SO42-, DOC, and DTN had the highest interpretation of the DOM optical indices of rainwater in the reservoir. Overall, understanding the characteristics of rainfall DOM fluorescence and the relationships with nutrients in different ecological regions provides important information for comprehending biogeochemical processes in reservoirs.

2.
Sci Total Environ ; 868: 161641, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36649766

RESUMEN

Numerous studies have demonstrated high concentrations of dissolved N2O and indirect N2O emission factors in groundwater affected by agriculture. However, the characteristics of seasonal and vertical dimensional difference in groundwater in high nitrate leaching areas are relatively lacking. We monitored the concentrations of dissolved and wellhead N2O of 23 groundwater wells over a one year period to understand the seasonal characteristics of dissolved and wellhead N2O concentrations and indirect N2O emission factors (EF5) of the shallow and deep groundwater in a high nitrogen leaching area and analyze the reasons for their differences. The mean dissolved N2O concentration in groundwater was 9.71 (9.03) µg/L, which was 1.5-fold higher during the wet season relative to the dry season. Furthermore, the leaching of soil N2O caused by rainfall and irrigation could be a pivotal factor affecting seasonal variation in the dissolved N2O. Shallow wells were found to have higher dissolved and wellhead N2O concentrations compared with deep wells in all seasons. The low wellhead N2O concentrations during the dry season were attributed to the seasonal decrease of the groundwater table and dissolved N2O concentrations. We concluded that indirect N2O emission factors did not vary in the vertical dimension but were higher during the wet season than that during the dry season. In addition, the mean indirect N2O emission factor in the groundwater was 0.025 %, which was one order of magnitude below the current IPCC value (0.25 %). Thus, we proposed that such a low indirect N2O emissions factor could imply a low indirect N2O emission potential in groundwater with high dissolved oxygen and nitrogen loads. Our study further indicated that seasonal differences in dissolved N2O concentrations and indirect N2O emission factors should be considered when estimating the potential emissions of dissolved N2O in groundwater.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35432557

RESUMEN

Objective: To investigate the preventive effects of Ilex cornuta aqueous extract (ICAE) on high-fat diet (HFD)-induced fatty liver of mice and its mechanisms. Materials and Methods: Twenty-six male KM (Kunming) mice were divided into 3 groups, including the control group (n = 9), fed with normal diet; HFD group (n = 9), fed with HFD; ICAE + HFD group (n = 8), fed with HFD and administered with ICAE (3 g·kg-1·d-1) at the same time for 10 weeks. Body weight, liver weight, intra-abdominal and subcutaneous fat weight, serum triglyceride (TG), total cholesterol (TC), and blood glucose were determined to evaluate the preventive effects of ICAE on obesity. The average 24 h food consumption of the mice was monitored for 5 times in the 9th week of the experiment to investigate the effects of ICAE on food intake. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) were assayed to observe the influences of HFD and ICAE on liver function. HE staining was adopted to observe the influence of ICAE on the morphology of adipose tissue and liver tissue. Hepatic TG and TC content assay and oil red O staining were used to evaluate the influences of ICAE on HFD-induced fatty liver, and the protein expression of peroxisome proliferator-activated receptors γ (PPARγ) and adipose differentiation-related protein (ADRP) in liver were examined by immunoblotting. Results: ICAE treatment significantly reduced the increase of body weight, intra-abdominal, and subcutaneous fat and liver weight induced by HFD (P < 0.001), but has no influence on food intake; ICAE treatment attenuated the elevation of serum TG, TC, and glucose, as well as serum ALT and AST (P < 0.01, P < 0.05, P < 0.001) and dramatically decreased the content of TG in liver (P < 0.01), but has no influence on hepatic TC content. HE staining and oil red O staining showed that ICAE significantly reduced HFD-induced white adipocyte hypertrophy and significantly inhibited lipid accumulation in liver. Immunoblotting showed that the protein levels of PPARγ and ADRP were significantly increased by HFD induction, which can be dramatically reduced by ICAE treatment (P < 0.05, P < 0.0001). Conclusion: ICAE has preventive effects on HFD-induced obesity and fatty liver in mice, exerted beneficial effects upon HFD-induced hepatic injury. The preventive effects of ICAE on fatty liver are concerned with the downregulation of PPARγ and ADRP protein expression in liver.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA