RESUMEN
The development of sustainable routes for the synthesis of metal organic frameworks (MOFs) is very important because of the wide applications of MOFs on a large scale in the fields of adsorption, separation, and catalysis. ZIF-8, a zinc-based zeolitic imidazolate framework (ZIF), was first prepared following a solvent-free method from zinc acetate and denoted as ZIF-8-DGUT. The synthesis was conducted with the addition of an appropriate amount of sodium hydroxide (NaOH) powder before fully grinding, and the synthesis was accomplished at mild temperature at 343 K for 24 h. This strategy provided a practical method for the production of ZIF materials.
RESUMEN
Excessively high, neural synchronization has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronization mechanisms can thus help control or even treat epilepsy. In this paper, we study neural synchronization in a random network where nodes are neurons with excitatory and inhibitory synapses, and neural activity for each node is provided by the adaptive exponential integrate-and-fire model. In this framework, we verify that the decrease in the influence of inhibition can generate synchronization originating from a pattern of desynchronized spikes. The transition from desynchronous spikes to synchronous bursts of activity, induced by varying the synaptic coupling, emerges in a hysteresis loop due to bistability where abnormal (excessively high synchronous) regimes exist. We verify that, for parameters in the bistability regime, a square current pulse can trigger excessively high (abnormal) synchronization, a process that can reproduce features of epileptic seizures. Then, we show that it is possible to suppress such abnormal synchronization by applying a small-amplitude external current on > 10% of the neurons in the network. Our results demonstrate that external electrical stimulation not only can trigger synchronous behavior, but more importantly, it can be used as a means to reduce abnormal synchronization and thus, control or treat effectively epileptic seizures.
RESUMEN
In this paper we analyze the second-order Kuramoto model in the presence of a positive correlation between the heterogeneity of the connections and the natural frequencies in scale-free networks. We numerically show that discontinuous transitions emerge not just in disassortative but also in strongly assortative networks, in contrast with the first-order model. We also find that the effect of assortativity on network synchronization can be compensated by adjusting the phase damping. Our results show that it is possible to control collective behavior of damped Kuramoto oscillators by tuning the network structure or by adjusting the dissipation related to the phases' movement.