Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
J Virol ; 98(9): e0063524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39158346

RESUMEN

Flavivirus infection capitalizes on cellular lipid metabolism to remodel the cellular intima, creating a specialized lipid environment conducive to viral replication, assembly, and release. The Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is responsible for significant morbidity and mortality in both humans and animals. Currently, there are no effective antiviral drugs available to combat JEV infection. In this study, we embarked on a quest to identify anti-JEV compounds within a lipid compound library. Our research led to the discovery of two novel compounds, isobavachalcone (IBC) and corosolic acid (CA), which exhibit dose-dependent inhibition of JEV proliferation. Time-of-addition assays indicated that IBC and CA predominantly target the late stage of the viral replication cycle. Mechanistically, JEV nonstructural proteins 1 and 2A (NS1 and NS2A) impede 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation by obstructing the liver kinase B1 (LKB1)-AMPK interaction, resulting in decreased p-AMPK expression and a consequent upsurge in lipid synthesis. In contrast, IBC and CA may stimulate AMPK by binding to its active allosteric site, thereby inhibiting lipid synthesis essential for JEV replication and ultimately curtailing viral infection. Most importantly, in vivo experiments demonstrated that IBC and CA protected mice from JEV-induced mortality, significantly reducing viral loads in the brain and mitigating histopathological alterations. Overall, IBC and CA demonstrate significant potential as effective anti-JEV agents by precisely targeting AMPK-associated signaling pathways. These findings open new therapeutic avenues for addressing infections caused by Flaviviruses. IMPORTANCE: This study is the inaugural utilization of a lipid compound library in antiviral drug screening. Two lipid compounds, isobavachalcone (IBC) and corosolic acid (CA), emerged from the screening, exhibiting substantial inhibitory effects on the Japanese encephalitis virus (JEV) proliferation in vitro. In vivo experiments underscored their efficacy, with IBC and CA reducing viral loads in the brain and mitigating JEV-induced histopathological changes, effectively shielding mice from fatal JEV infection. Intriguingly, IBC and CA may activate 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) by binding to its active site, curtailing the synthesis of lipid substances, and thus suppressing JEV proliferation. This indicates AMPK as a potential antiviral target. Remarkably, IBC and CA demonstrated suppression of multiple viruses, including Flaviviruses (JEV and Zika virus), porcine herpesvirus (pseudorabies virus), and coronaviruses (porcine deltacoronavirus and porcine epidemic diarrhea virus), suggesting their potential as broad-spectrum antiviral agents. These findings shed new light on the potential applications of these compounds in antiviral research.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antivirales , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Metabolismo de los Lípidos , Replicación Viral , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Ratones , Antivirales/farmacología , Humanos , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/virología , Proteínas Quinasas Activadas por AMP/metabolismo , Chalconas/farmacología , Triterpenos/farmacología , Proteínas no Estructurales Virales/metabolismo , Infecciones por Flavivirus/tratamiento farmacológico , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/metabolismo , Flavivirus/efectos de los fármacos , Línea Celular
2.
PhytoKeys ; 243: 209-214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966306

RESUMEN

A new species, Astragalusliuaiminii Z. Z. Yang & Q. R. Liu (Fabaceae), is described and illustrated from Xinjiang Province, China. The new species is close to A.wenquanensis S. B. Ho, but differs from the latter by leaves having a single leaflet (vs. 3-5 leaflets), and inflorescences with 1-2 flowers (vs. inflorescences with 5-7 flowers). It is also similar to A.monophyllus Maxim in leaf shape, but differs by its calyx expanding to become saccate and totally enveloping the pod (vs. calyx tubular, and ruptured by pod after flowering).

3.
Am J Cardiol ; 226: 108-117, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39009056

RESUMEN

COVID-19 may predispose patients to cardiac injuries but whether COVID-19 infection affects the morphological features of coronary plaques to potentially influence the outcome of patients with coronary artery disease (CAD) remains unknown. By using optical coherence tomography (OCT), this study compared the characteristics of coronary plaque in patients with CAD with/without COVID-19 infection. The 206 patients were divided into 2 groups. The COVID-19 group had 113 patients between December 7, 2022, and March 31, 2023, who received OCT assessment after China decided to lift the restriction on COVID-19 and had a history of COVID-19 infection. The non-COVID-19 group had 93 patients without COVID-19 infection who underwent OCT before December 7, 2022. The COVID-19 group demonstrated a higher incidence of plaque ruptures (53.1% vs 38.7%, p = 0.039), erosions (28.3% vs 11.8%, p = 0.004), fibrous (96.5% vs 89.2%, p = 0.041) and diffuse lesions (73.5% vs 50.5%, p <0.001) compared with the non-COVID-19 group, whereas non-COVID-19 group exhibited a higher frequency of cholesterol crystals (83.9% vs 70.8%, p = 0.027), deep calcifications (65.6% vs 51.3%, p = 0.039) and solitary lesions (57.0% vs 34.5%, p = 0.001). Kaplan-Meier survival analysis revealed a significantly lower major adverse cardiac events-free probability in the COVID-19 group (91.6% vs 95.5%, p = 0.006) than in the non-COVID-19 group. In conclusion, OCT demonstrated that COVID-19 infection is associated with coronary pathological changes such as more plaque ruptures, erosions, fibrosis, and diffuse lesions. Further, COVID-19 infection is associated with a higher propensity for acute coronary events and a higher risk of major adverse cardiac events in patients with CAD.


Asunto(s)
COVID-19 , Enfermedad de la Arteria Coronaria , Vasos Coronarios , Placa Aterosclerótica , Tomografía de Coherencia Óptica , Humanos , COVID-19/complicaciones , COVID-19/epidemiología , Tomografía de Coherencia Óptica/métodos , Masculino , Femenino , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Persona de Mediana Edad , Vasos Coronarios/diagnóstico por imagen , Anciano , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/complicaciones , SARS-CoV-2 , China/epidemiología , Estudios Retrospectivos
4.
J Virol ; 98(6): e0049424, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38757985

RESUMEN

Mitochondria are energy producers in cells, which can affect viral replication by regulating the host innate immune signaling pathways, and the changes in their biological functions are inextricably linked the viral life cycle. In this study, we screened a library of 382 mitochondria-targeted compounds and identified the antiviral inhibitors of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme in the de novo synthesis pathway of pyrimidine ribonucleotides, against classical swine fever virus (CSFV). Our data showed that the inhibitors interfered with viral RNA synthesis in a dose-dependent manner, with half-maximal effective concentrations (EC50) ranging from 0.975 to 26.635 nM. Remarkably, DHODH inhibitors obstructed CSFV replication by enhancing the innate immune response including the TBK1-IRF3-STAT1 and NF-κB signaling pathways. Furthermore, the data from a series of compound addition and supplementation trials indicated that DHODH inhibitors also inhibited CSFV replication by blocking the de novo pyrimidine synthesis. Remarkably, DHODH knockdown demonstrated that it was essential for CSFV replication. Mechanistically, confocal microscopy and immunoprecipitation assays showed that the non-structural protein 4A (NS4A) recruited and interacted with DHODH in the perinuclear. Notably, NS4A enhanced the DHODH activity and promoted the generation of UMP for efficient viral replication. Structurally, the amino acids 65-229 of DHODH and the amino acids 25-40 of NS4A were pivotal for this interaction. Taken together, our findings highlight the critical role of DHODH in the CSFV life cycle and offer a potential antiviral target for the development of novel therapeutics against CSF. IMPORTANCE: Classical swine fever remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. dihydroorotate dehydrogenase (DHODH) inhibitors have been shown to suppress the replication of several viruses in vitro and in vivo, but the effects on Pestivirus remain unknown. In this study, three specific DHODH inhibitors, including DHODH-IN-16, BAY-2402234, and Brequinar were found to strongly suppress classical swine fever virus (CSFV) replication. These inhibitors target the host DHODH, depleting the pyrimidine nucleotide pool to exert their antiviral effects. Intriguingly, we observed that the non-structural protein 4A of CSFV induced DHODH to accumulate around the nucleus in conjunction with mitochondria. Moreover, NS4A exhibited a strong interaction with DHODH, enhancing its activity to promote efficient CSFV replication. In conclusion, our findings enhance the understanding of the pyrimidine synthesis in CSFV infection and expand the novel functions of CSFV NS4A in viral replication, providing a reference for further exploration of antiviral targets against CSFV.


Asunto(s)
Antivirales , Virus de la Fiebre Porcina Clásica , Dihidroorotato Deshidrogenasa , Proteínas no Estructurales Virales , Replicación Viral , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Línea Celular , Peste Porcina Clásica/tratamiento farmacológico , Peste Porcina Clásica/inmunología , Peste Porcina Clásica/metabolismo , Peste Porcina Clásica/virología , Virus de la Fiebre Porcina Clásica/efectos de los fármacos , Virus de la Fiebre Porcina Clásica/crecimiento & desarrollo , Virus de la Fiebre Porcina Clásica/inmunología , Virus de la Fiebre Porcina Clásica/metabolismo , Dihidroorotato Deshidrogenasa/metabolismo , Relación Dosis-Respuesta a Droga , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Inmunoprecipitación , Microscopía Confocal , Mitocondrias/enzimología , Mitocondrias/metabolismo , ARN Viral/biosíntesis , Transducción de Señal/efectos de los fármacos , Porcinos/virología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
5.
Heliyon ; 10(5): e27176, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38562497

RESUMEN

Federated learning enables the collaborative training of machine learning models across multiple organizations, eliminating the need for sharing sensitive data. Nevertheless, in practice, the data distributions among these organizations are often non-independent and identically distributed (non-IID), which poses significant challenges for traditional federated learning. To tackle this challenge, we present a hierarchical federated learning framework based on blockchain technology, which is designed to enhance the training of non-IID data., protect data privacy and security, and improve federated learning performance. The framework builds a global shared pool by constructing a blockchain system to reduce the non-IID degree of local data and improve model accuracy. In addition, we use smart contracts to distribute and collect models and design a main blockchain to store local models for federated aggregation, achieving decentralized federated learning. We train the MLP model on the MNIST dataset and the CNN model on the Fashion-MNIST and CIFAR-10 datasets to verify its feasibility and effectiveness. The experimental results show that the proposed strategy significantly improves the accuracy of decentralized federated learning on three tasks with non-IID data.

6.
World J Stem Cells ; 16(3): 245-256, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38577237

RESUMEN

Mesenchymal stem cells (MSCs) are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts, chondrocytes and adipocytes. The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes, in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes. Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis. However, the mechanism underlying the adipogenic differentiation of MSCs is not fully understood. Here, the current knowledge of adipogenic differentiation in MSCs is reviewed, focusing on signaling pathways, noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation. Finally, the relationship between maladipogenic differentiation and diseases is briefly discussed. We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.

7.
Eur J Med Chem ; 269: 116311, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508118

RESUMEN

Four series of imidazoles (15a-g, 20c, and 20d) and thiazoles (18a-g, 22a, and 22b) possessing various amino acids were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. Among them, compounds 15g and 18c showed the highest inhibitory activity against ALK5, with IC50 values of 0.017 and 0.025 µM, respectively. Compounds 15g and 18c efficiently inhibited extracellular matrix (ECM) deposition in TGF-ß-induced hepatic stellate cells (HSCs), and eventually suppressed HSC activation. Moreover, compound 15g showed a good pharmacokinetic (PK) profile with a favorable half-life (t1/2 = 9.14 h). The results indicated that these compounds exhibited activity targeting ALK5 and may have potential in the treatment of liver fibrosis; thus they are worthy of further study.


Asunto(s)
Aminoácidos , Tiazoles , Humanos , Tiazoles/farmacología , Aminoácidos/farmacología , Cirrosis Hepática/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Imidazoles/farmacología
8.
Chem Biodivers ; 21(4): e202400135, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38425248

RESUMEN

Four series of novel pyridine derivatives (17 a-i, 18 a-i, 19 a-e, and 20 a-e) were synthesized and their antimicrobial activities were evaluated. Of all the target compounds, almost half target compounds showed moderate or high antibacterial activity. The 4-F substituted compound 17 d (MIC=0.5 µg/mL) showed the highest antibacterial activity, its activity was twice the positive control compound gatifloxacin (MIC=1.0 µg/mL). For fungus ATCC 9763, the activities of compounds 17 a and 17 d are equivalent to the positive control compound fluconazole (MIC=8 µg/mL). Furthermore, compounds 17 a and 17 d showed little cytotoxicity to human LO2 cells, and did not show hemolysis even at ultra-high concentration (200 µM). The results indicate that these compounds are valuable for further development as antibacterial and antifungal agents.


Asunto(s)
Tiadiazoles , Humanos , Tiadiazoles/farmacología , Antifúngicos/farmacología , Antibacterianos/farmacología , Hongos , Piridinas/farmacología , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
9.
PLoS Pathog ; 20(3): e1012130, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38551978

RESUMEN

Classical Swine Fever (CSF), caused by the Classical Swine Fever Virus (CSFV), inflicts significant economic losses on the global pig industry. A key factor in the challenge of eradicating this virus is its ability to evade the host's innate immune response, leading to persistent infections. In our study, we elucidate the molecular mechanism through which CSFV exploits m6A modifications to circumvent host immune surveillance, thus facilitating its proliferation. We initially discovered that m6A modifications were elevated both in vivo and in vitro upon CSFV infection, particularly noting an increase in the expression of the methyltransferase METTL14. CSFV non-structural protein 5B was found to hijack HRD1, the E3 ubiquitin ligase for METTL14, preventing METTL14 degradation. MeRIP-seq analysis further revealed that METTL14 specifically targeted and methylated TLRs, notably TLR4. METTL14-mediated regulation of TLR4 degradation, facilitated by YTHDF2, led to the accelerated mRNA decay of TLR4. Consequently, TLR4-mediated NF-κB signaling, a crucial component of the innate immune response, is suppressed by CSFV. Collectively, these data effectively highlight the viral evasion tactics, shedding light on potential antiviral strategies targeting METTL14 to curb CSFV infection.


Asunto(s)
Adenina , Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Animales , Virus de la Fiebre Porcina Clásica/genética , Inmunidad Innata , Porcinos , Receptor Toll-Like 4
10.
Heliyon ; 10(3): e25214, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318035

RESUMEN

African Swine Fever (ASF), caused by the African swine fever virus (ASFV), has inflicted significant economic losses on the pig industry in China. The key to mitigating its impact lies in accurate screening and strict biosecurity measures. In this regard, the development of colloidal gold immunochromatographic test strips (CGITS) has proven to be an effective method for detecting ASFV antibodies. These test strips are based on the ASFV p30 recombinant protein and corresponding monoclonal antibodies. The design of the test strip incorporates a high-concentration colloidal gold-labeled p30 recombinant protein as the detection sensor, utilizing Staphylococcal Protein A (SPA) as the test line (T line), and p30 monoclonal antibody as the control line (C line). The sensitivity and specificity of the test strip were evaluated after optimizing the labeling concentration, pH, and protein dosage. The research findings revealed that the optimal colloidal gold labeling concentration was 0.05 %, the optimal pH was 8.4, and the optimal protein dosage was 10 µg/mL. Under these conditions, the CGITS demonstrated a detection limit of 1:512 dilution of ASFV standard positive serum, without exhibiting cross-reactivity with antibodies against other viral pathogens. Furthermore, the test strips remained stable for up to 20 days when stored at 50 °C and 4 °C. Comparatively, the CGITS outperformed commercial ELISA kits, displaying a sensitivity of 90.9 % and a specificity of 96.2 %. Subsequently, 108 clinical sera were tested to assess its performance. The data showed that the coincidence rate between the CGITS and ELISA was 93.5 %. In conclusion, the rapid colloidal gold test strip provides an efficient and reliable screening tool for on-site clinical detection of ASF in China. Its accuracy, stability, and simplicity make it a valuable asset in combating the spread of ASF and limiting its impact on the pig industry.

11.
Materials (Basel) ; 16(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005043

RESUMEN

Similar materials play an important role in model testing. In order to meet the demand for similar materials in modeling tests, such as those on coal mining, coal system rocky similar materials were formulated using yellow sand as a coarse aggregate, heavy calcium carbonate as a fine aggregate, and cement and gypsum as binders. Based on the orthogonal experimental design method, four influencing factors, namely the aggregate-binder ratio, heavy calcium carbonate content, cement-gypsum ratio, and moisture content, were selected. Each factor was designed at five levels. Through weighing, uniaxial compression, Brazilian splitting, and variable-angle plate shear tests on 225 specimens under 25 different ratios, five physico-mechanical property indicators of the material, including density, compressive strength, tensile strength, cohesion, and internal friction angle, were obtained under different ratios. The test results indicate that the similar materials formulated with the above raw materials had a wide range of mechanical properties, which met the simulation needs of different types of coal rocks, such as main coking coal, anthracite, shale, etc., in the similar model test. Range analysis was adopted to analyze the sensitivities to each factor, which showed that the density and internal friction angle of similar materials are mainly controlled by the aggregate-binder ratio; the cement-gypsum ratio mainly controls the compressive strength, tensile strength, and cohesion of the material. Analysis of variance (ANOVA) was adopted to analyze the sensitivities to each factor, which showed that the aggregate-binder ratio had a highly significant effect on the density of the material, the cement-gypsum ratio had a highly significant effect on the compressive and tensile strength of the material, the cement-gypsum ratio had a significant effect on the cohesion and density of the material, and the moisture content had a significant effect on the compressive strength of the material. The remaining factors did not significantly affect the material parameters. The results of this study can provide some reference for the selection of coal system rocky similar materials in subsequent physical modeling tests.

12.
J Colloid Interface Sci ; 652(Pt A): 57-68, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591084

RESUMEN

Development of bifunctional hydrazine oxidation and oxygen reduction electrocatalysts with high activity and stability is of great significance for the implementation of direct hydrazine fuel cells. Combining zero-dimensional metal nanoparticles with three-dimensional nitrogen-doped carbon nanosheets is an attractive strategy for balancing performance and cost. However, the precise construction of these composites remains a significant challenge, and thorough study of their interaction mechanisms is lacking. Herein, the CuNPs/CuSA-NPCF catalyst was constructed by anchoring copper nanoparticles on a three-dimensional nitrogen-doped porous carbon nanosheet framework through coordination of polyvinyl pyrrolidone and copper ions. The Schottky barrier of metal-semiconductor matched the Fermi level of the rectifying contact, thus enabling directional electron transfer. The resulting electron-deficient Cu nanoparticles surface exhibited Lewis acidity, which was beneficial to adsorption of hydrazine molecule. While the electron-enriched Cu-N4/carbon surface improved the adsorption of oxygen molecule, and accelerated electron supply from Cu-N4 active sites to various oxygen intermediates. The CuNPs/CuSA-NPCF Mott-Schottky catalyst exhibited excellent catalytic activity for hydrazine oxidation reaction and oxygen reduction reaction in an alkaline media. The directional manipulation of electron transfer in heterogeneous materials was an attractive universal synthesis method, providing new approach for the preparation of efficient and stable hydrazine fuel cell catalysts.

13.
Heliyon ; 9(7): e17084, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449155

RESUMEN

The rapid development of the Internet and Internet of Things has rapidly introduced human society into the information age, and the way of fake news production has been updated, which has greatly affected the normal life of human beings. In order to identify worthless fake news and trace massive fake news data from unknown sources, and share valuable news data to fully disseminate effective real news, news owners usually store news data in cloud. Users of IoT terminals can access news data on demand without storing it locally. However, the authenticity of the fictive newspaper numbers source, which is easy to destroy, and the social media platform. Besides, when massive news data is saved on cloud server, the news owners have to at the risk of lose physical control over news data and it will face the risk of fake news being disseminated and real news being falsified. Thus, this paper proposes a novel mechanism for secure storage of news data using blockchain technology. Firstly, traceability and verification of fake news data is improved by the cooperative storage model on and off the chain. Secondly due to the inability of past polynomial commitment to update the commitment, we will be a hindrance to use polynomial commitment to build a secure authentication protocol. Therefore, in this paper, we design the update algorithm for polynomial commitment in order to be able to guarantee the consistency of on-chain and blockchain database news data.

14.
Dalton Trans ; 52(28): 9721-9730, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37395005

RESUMEN

Due to their low cost and excellent electrocatalytic performance, nickel-based hydroxides are widely used as hydrogen evolution catalysts for large-scale hydrogen production by water electrolysis. In this study, a heterostructured composite with improved electron transport and modulated electron surface density was prepared by combining Ni(OH)2 with two-dimensional layered Ti3C2Tx (Ti3C2Tx-MXene). Ni(OH)2 nanosheets were formed on nickel foam (NF) substrates using acid etching, followed by the longitudinal growth of negatively charged Ti3C2Tx-MXene on positively charged Ni(OH)2/NF via electrophoretic deposition. The resulting structure facilitates spontaneous electron transfer from Ti3C2Tx-MXene to Ni(OH)2/NF by means of the Mott-Schottky heterostructure effect and establishes a continuous electron transport path which effectively increases the concentration of active sites, improving hydrogen evolution during water electrolysis. The obtained electrode is characterized by an HER overpotential of 66 mV (vs. RHE) and a Tafel slope of +105 mV dec-1 at a current density of 10 mA cm-2, combined with good electrochemical stability.

15.
Transl Pediatr ; 12(4): 663-669, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37181025

RESUMEN

Background: Hand, foot, and mouth disease (HFMD) is an epidemic infectious disease in children, usually associated with fever, mouth lesions, and limb rashes. Although benign and self-limiting, it can be dangerous or even fatal in rare cases. Early identification of severe cases is crucial to ensure optimal care. Procalcitonin (PCT) is an early marker for predicting sepsis. Therefore, in this study, we aimed to investigate the significance of PCT levels, age, lymphocyte subsets, N-terminal pro-brain natriuretic peptide (BNP) in the early diagnosis of severe HFMD. Methods: Using strict inclusion and exclusion criteria, we retrospectively enrolled 183 children with HFMD between January 2020 and August 2021 and divided them into mild (76 cases) and severe (107 cases) groups according to their condition. Data on the patients' PCT levels, lymphocyte subsets, and clinical characteristics at admission were evaluated and compared using the Student's t-test and χ2 test. Results: We found that compared with mild disease forms, the severe disease forms were associated with higher blood PCT levels (P=0.001) and lower ages of onset (P<0.001). The percentages of lymphocyte subsets, including suppressor T cells (CD3+CD8+), T lymphocytes (CD3+), T helper cells (CD3+CD4+), natural killer cells (CD16+56+), and B lymphocytes (CD19+), were identical between the two disease forms in patients under 3 years of age. Conclusions: Age and blood PCT levels play a vital role in the early identification of severe HFMD.

16.
J Virol ; 97(5): e0036423, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37255314

RESUMEN

Classical swine fever virus (CSFV) is a highly pathogenic RNA virus belonging to the Flaviviridae family that can cause deadly classical swine fever (CSF) in pigs. However, the molecular details of virus replication in the host are still unclear. Our previous studies have reported that several Rab proteins mediate CSFV entry into host cells, but it is unknown whether CSFV hijacks other Rab proteins for effective viral infection. Here, we systematically studied the role of Rab14 protein in regulating lipid metabolism for promoting viral assembly. First, Rab14 knockdown and overexpression significantly affected CSFV replication, indicating the essential role of Rab14 in CSFV infection. Interestingly, Rab14 could significantly affect virus replication in the late stage of infection. Mechanistically, CSFV NS5A recruited Rab14 to the ER, followed by ceramide transportation to the Golgi apparatus, where sphingomyelin was synthesized. The experimental data of small molecule inhibitors, RNA interference, and replenishment assay showed that the phosphatidylinositol-3-kinase (PI3K)/AKT/AS160 signaling pathway regulated the function of Rab14 to affect the transport of ceramide. More importantly, sphingomyelin on the Golgi apparatus contributed to the assembly of viral particles. Blockage of the Rab14 regulatory pathway induced the reduction of the content of sphingomyelin on the Golgi apparatus, impairing the assembly of virus particles. Our study clarifies that Rab14 regulates lipid metabolism and promotes CSFV replication, which provides insight into a novel function of Rab14 in regulating vesicles to transport lipids to the viral assembly factory. IMPORTANCE The Rab protein family members participate in the viral replication of multiple viruses and play important roles in the virus infection cycle. Our previous research focused on Rab5/7/11, which regulated the trafficking of vesicles in the early stage of CSFV infection, especially in viral endocytosis. However, the role of other Rab proteins in CSFV replication is unclear and needs further clarification. Strikingly, we screened some Rabs and found the important role of Rab14 in CSFV infection. Virus infection mobilized Rab14 to regulate the vesicle to transport ceramide from the ER to the Golgi apparatus, further promoting the synthesis of sphingomyelin and facilitating virus assembly. The treatment of inhibitors showed that the lipid transport mediated by Rab14 was regulated by the PI3K/AKT/AS160 signaling pathway. Knockdown of Rab14 or the treatment with PI3K/AKT/AS160 inhibitors reduced the ceramide content in infected cells and hindered virus assembly. Our study is the first to explain that vesicular lipid transport regulated by Rab promotes CSFV assembly, which is conducive to the development of antiviral drugs.


Asunto(s)
Ceramidas , Virus de la Fiebre Porcina Clásica , Proteínas de Unión al GTP Monoméricas , Ensamble de Virus , Animales , Ceramidas/metabolismo , Peste Porcina Clásica , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Esfingomielinas/metabolismo , Porcinos , Replicación Viral
17.
ACS Appl Mater Interfaces ; 15(16): 20141-20150, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37058551

RESUMEN

Metals and their compounds effectively suppress the polysulfide shuttle effect on the cathodes of a lithium-sulfur (Li-S) battery by chemisorbing polysulfides and catalyzing their conversion. However, S fixation on currently available cathode materials is below the requirements of large-scale practical application of this battery type. In this study, perylenequinone was utilized to improve polysulfide chemisorption and conversion on cobalt (Co)-containing Li-S battery cathodes. According to IGMH analysis, the binding energies of DPD and carbon materials as well as polysulfide adsorption were significantly enhanced in the presence of Co. According to in situ Fourier transform infrared spectroscopy, the hydroxyl and carbonyl groups in perylenequinone are able to form O-Li bonds with Li2Sn, facilitating chemisorption and catalytic conversion of polysulfides on metallic Co. The newly prepared cathode material demonstrated superior rate and cycling performances in the Li-S battery. It exhibited an initial discharge capacity of 780 mAh g-1 at 1 C and a minimum capacity decay rate of only 0.041% over 800 cycles. Even with a high S loading, the cathode material maintained an impressive capacity retention rate of 73% after 120 cycles at 0.2 C.

18.
J Virol ; 97(1): e0192922, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602362

RESUMEN

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is an important and highly infectious pig disease worldwide. Kinesin-1, a molecular motor responsible for transporting cargo along the microtubule, has been demonstrated to be involved in the infections of diverse viruses. However, the role of kinesin-1 in the CSFV life cycle remains unknown. Here, we first found that Kif5B played a positive role in CSFV entry by knockdown or overexpression of Kif5B. Subsequently, we showed that Kif5B was associated with the endosomal and lysosomal trafficking of CSFV in the early stage of CSFV infection, which was reflected by the colocalization of Kif5B and Rab7, Rab11, or Lamp1. Interestingly, trichostatin A (TSA) treatment promoted CSFV proliferation, suggesting that microtubule acetylation facilitated CSFV endocytosis. The results of chemical inhibitors and RNA interference showed that Rac1 and Cdc42 induced microtubule acetylation after CSFV infection. Furthermore, confocal microscopy revealed that cooperation between Kif5B and dynein help CSFV particles move in both directions along microtubules. Collectively, our study shed light on the role of kinesin motor Kif5B in CSFV endocytic trafficking, indicating the dynein/kinesin-mediated bidirectional CSFV movement. The elucidation of this study provides the foundation for developing CSFV antiviral drugs. IMPORTANCE The minus end-directed cytoplasmic dynein and the plus end-directed kinesin-1 are the molecular motors that transport cargo on microtubules in intracellular trafficking, which plays a notable role in the life cycles of diverse viruses. Our previous studies have reported that the CSFV entry host cell is dependent on the microtubule-based motor dynein. However, little is known about the involvement of kinesin-1 in CSFV infection. Here, we revealed the critical role of kinesin-1 that regulated the viral endocytosis along acetylated microtubules induced by Cdc42 and Rac1 after CSFV entry. Mechanistically, once CSFV transported by dynein met an obstacle, it recruited kinesin-1 to move in reverse to the anchor position. This study extends the theoretical basis of intracellular transport of CSFV and provides a potential target for the control and treatment of CSFV infection.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Cinesinas , Animales , Virus de la Fiebre Porcina Clásica/fisiología , Dineínas/metabolismo , Endocitosis , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/virología , Porcinos , Internalización del Virus , Replicación Viral/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas
19.
Molecules ; 28(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36677912

RESUMEN

Electrolysis of seawater using solar and wind energy is a promising technology for hydrogen production which is not affected by the shortage of freshwater resources. However, the competition of chlorine evolution reactions and oxygen evolution reactions on the anode is a major obstacle in the upscaling of seawater electrolyzers for hydrogen production and energy storage, which require chlorine-inhibited oxygen evolution electrodes to become commercially viable. In this study, such an electrode was prepared by growing δ-MnO2 nanosheet arrays on the carbon cloth surface. The selectivity of the newly prepared anode towards the oxygen evolution reaction (OER) was 66.3% after 30 min of electrolyzer operation. The insertion of Fe, Co and Ni ions into MnO2 nanosheets resulted in an increased number of trivalent Mn atoms, which had a negative effect on the OER selectivity. Good tolerance of MnO2/CC electrodes to chlorine evolution in seawater electrolysis indicates its suitability for upscaling this important energy conversion and storage technology.

20.
Comb Chem High Throughput Screen ; 26(5): 1001-1014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35713138

RESUMEN

OBJECTIVE: Malignant melanoma with gastric cancer is one of the most malignant tumors. However, there have been no reports on the effects of KAI1 and miRNA-633 on the survival and prognosis of patients with malignant melanoma with gastric cancer. METHODS: Fifty patients with malignant melanoma and gastric cancer were collected from October 2017 to December 2019. The clinical parameters included clinical information, such as sex, age, tumor size, and tumor staging. RT-qPCR was used to detect the expression of KAI1 and miRNA- 633. The role of KAI1 and miRNA-633 on the overall survival of melanoma was explored by the Pearson chi-square test, Spearman-rho correlation test, Univariate and multivariate cox regression analyses, and Kaplan-Meier method. Furthermore, the bioinformatic analysis was used to verify the role of KAI1 and miRNA-633 on malignant melanoma with gastric cancer. RESULTS: The expression of KAI1 and miRNA-633 was significantly related with the tumor size and staging of tumor (p<0.05) based on the Pearson chi-square test. Spearman's correlation coefficient displayed that KAI1 was significantly correlated with the miRNA-633 (ρ=-0.439, p=0.001). The result of multivariate cox proportional regression analysis showed that KAI1 (HR =0.109, 95% CI: 0.031-0.375, p< 0.001), and miRNA-633 (HR = 13.315, 95% CI: 3.844-46.119, p<0.001) were significantly associated with overall survival. CONCLUSION: The low expression level of KAI1 and high expression of miRNA-633 are significantly correlated with the poor overall survival prognosis of malignant melanoma with gastric cancer, to provide a basis for KAI1 and miRNA-633 to become novel molecular targets for malignant melanoma with gastric cancer.


Asunto(s)
Melanoma , MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , MicroARNs/genética , Proteína Kangai-1/genética , Proteína Kangai-1/análisis , Proteína Kangai-1/metabolismo , Melanoma/diagnóstico , Melanoma/genética , Biomarcadores de Tumor/metabolismo , Estadificación de Neoplasias , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA