Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 4): 135411, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39245099

RESUMEN

Lung carcinoma, particularly non-small-cell lung cancer (NSCLC), accounts for a significant portion of cancer-related deaths, with a fatality rate of approximately 19 %. Niclosamide (NIC), originally an anthelmintic drug, has attracted attention for its potential in disrupting cancer cells through various intracellular signaling pathways. However, its effectiveness is hampered by limited solubility, reducing its bioavailability. This study investigates the efficacy of NIC against lung cancer using inhalable hybrid nano-assemblies with chitosan-functionalized Poly (ε-caprolactone) (PCL) as a carrier for pulmonary delivery. The evaluation encompasses various aspects such as aerodynamic and physicochemical properties, drug release kinetics, cellular uptake, biocompatibility, cell migration, autophagic flux, and apoptotic cell death in A549 lung cancer cells. Increasing NIC dosage correlates with enhanced inhibition of cell proliferation, showing a dose-dependent profile (approximately 75 % inhibition efficiency at 20 µg/mL of NIC). Optimization of inhaled dosage and efficacy is conducted in a murine model of NNK-induced tumor-bearing lung cancer. Following inhalation, NIC-CS-PCL-NA demonstrates significant lung deposition, retention, and metabolic stability. Inhalable nano-assemblies promote autophagy flux and induce apoptotic cell death. Preclinical trials reveal substantial tumor regression with minimal adverse effects, underscoring the potential of inhalable NIC-based nano-formulation as a potent therapeutic approach for NSCLC, offering effective tumor targeting and killing capabilities.

2.
J Mater Chem B ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229638

RESUMEN

Lung cancer is one of the most fatal malignancies, with the highest death rate (∼19%), and the NSCLC type accounts for ∼85% of lung cancers. In the search for new treatments, antimicrobial peptides have received much attention due to their propensity for selective destruction of cancer cells. In the current study, we evaluated the efficacy of the metastasis-specific tumour-homing-TMTP1 peptide against lung cancer using inhalable hybrid nano-assemblies of the PEG-PLGA copolymer as a carrier for pulmonary delivery which was assessed for aerodynamic and physicochemical properties, along with the peptide-release profile, physical stability, cellular uptake and biocompatibility, generation of reactive oxygen species, cell migration, autophagic flux, and apoptotic cell death in A549 lung cancer cells. Optimization of inhaled dose, lung retention, and efficacy studies was conducted to evaluate the formulation in an NNK (nicotine-derived nitrosamine ketone) induced tumour-bearing lung cancer murine model. After inhalation, the formulation with nano-scale physiognomies showed good lung deposition, retention, and metabolic stability. The inhalable nano-assemblies have shown enhanced generation of reactive oxygen species with increased autophagy flux and apoptotic cell death. Pre-clinical animal trials show substantial tumour regression by inhalable TMTP1-based nano-formulation with limited side effects. Our results on metastasis targeting and tumour-homing peptide TMTP1 demonstrate its effective tumour targeting and tumour-killing efficacy and provide a reference for the development of new therapeutics for NSCLC.

3.
Nanoscale ; 16(35): 16485-16499, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135488

RESUMEN

Central nervous system tuberculosis (CNS-TB) is a severe form of extra-pulmonary tuberculosis with high mortality and morbidity rates. The standard treatment regimen for CNS-TB parallels that of pulmonary TB, despite the challenge posed by the blood-brain barrier (BBB), which limits the efficacy of first-line anti-TB drugs (ATDs). Nose-to-brain (N2B) drug delivery offers a promising solution for achieving high ATD concentrations directly at infection sites in the brain while bypassing the BBB. This study aimed to develop chitosan nanoparticles encapsulating ATDs, specifically isoniazid (INH) and rifampicin (RIF). These nanoparticles were further processed into micro-sized chitosan nano-aggregates (NA) via spray drying. Both INH-NA and RIF-NA showed strong mucoadhesion and significantly higher permeation rates across RPMI 2650 cells compared to free ATDs. Intranasal administration of these NAs to TB-infected mice for four weeks resulted in a significant reduction of mycobacterial load by approximately ∼2.86 Log 10 CFU compared to the untreated group. This preclinical data highlights the efficacy of intranasal chitosan nano-aggregates in treating CNS-TB, demonstrating high therapeutic potential, and addressing brain inflammation challenges. To our knowledge, this study is the first to show nasal delivery of ATD nano-formulations for CNS-TB management.


Asunto(s)
Antituberculosos , Quitosano , Isoniazida , Nanopartículas , Rifampin , Tuberculosis del Sistema Nervioso Central , Animales , Ratones , Tuberculosis del Sistema Nervioso Central/tratamiento farmacológico , Barrera Hematoencefálica , Quitosano/administración & dosificación , Quitosano/química , Nanopartículas/administración & dosificación , Nanopartículas/química , Administración Intranasal , Células Epiteliales/efectos de los fármacos , Antituberculosos/administración & dosificación , Antituberculosos/química , Ratones Endogámicos BALB C , Adhesivos/administración & dosificación , Adhesivos/química , Mucinas/química , Encéfalo/efectos de los fármacos , Encéfalo/patología , Humanos , Línea Celular , Isoniazida/administración & dosificación , Rifampin/administración & dosificación , Sistemas de Liberación de Medicamentos
4.
ACS Infect Dis ; 10(8): 2567-2583, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39038212

RESUMEN

Mycobacterium tuberculosis (Mtb) has long posed a significant challenge to global public health, resulting in approximately 1.6 million deaths annually. Pulmonary tuberculosis (TB) instigated by Mtb is characterized by extensive lung tissue damage, leading to lesions and dissemination within the tissue matrix. Matrix metalloproteinases (MMPs) exhibit endopeptidase activity, contributing to inflammatory tissue damage and, consequently, morbidity and mortality in TB patients. MMP activities in TB are intricately regulated by various components, including cytokines, chemokines, cell receptors, and growth factors, through intracellular signaling pathways. Primarily, Mtb-infected macrophages induce MMP expression, disrupting the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thereby impairing extracellular matrix (ECM) deposition in the lungs. Recent research underscores the significance of immunomodulatory factors in MMP secretion and granuloma formation during Mtb pathogenesis. Several studies have investigated both the activation and inhibition of MMPs using endogenous MMP inhibitors (i.e., TIMPs) and synthetic inhibitors. However, despite their promising pharmacological potential, few MMP inhibitors have been explored for TB treatment as host-directed therapy. Scientists are exploring novel strategies to enhance TB therapeutic regimens by suppressing MMP activity to mitigate Mtb-associated matrix destruction and reduce TB induced lung inflammation. These strategies include the use of MMP inhibitor molecules alone or in combination with anti-TB drugs. Additionally, there is growing interest in developing novel formulations containing MMP inhibitors or MMP-responsive drug delivery systems to suppress MMPs and release drugs at specific target sites. This review summarizes MMPs' expression and regulation in TB, their role in immune response, and the potential of MMP inhibitors as effective therapeutic targets to alleviate TB immunopathology.


Asunto(s)
Inhibidores de la Metaloproteinasa de la Matriz , Metaloproteinasas de la Matriz , Mycobacterium tuberculosis , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Animales , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis/tratamiento farmacológico , Progresión de la Enfermedad
5.
Biomater Adv ; 160: 213853, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636119

RESUMEN

Patients with rheumatoid arthritis (RA) often have one or more painfuljoints despite adequate medicine. Local drug delivery to the synovial cavity bids for high drug concentration with minimal systemic adverse effects. However, anti-RA drugs show short half-lives in inflamed joints after intra-articular delivery. To improve the therapeutic efficacy, it is essential to ensure that a drug is only released from the formulation when it is needed. In this work, we developed an intelligent "Self-actuating" drug delivery system where Disease-modifying anti-rheumatic Drug (DMARD) methotrexate is incorporated within a matrix intended to be injected directly into joints. This formulation has the property to sense the need and release medication only when joints are inflamed in response to inflammatory enzyme Matrix metalloproteinases (MMP). These enzymes are important proteases in RA pathology, and several MMP are present in augmented levels in synovial fluid and tissues. A high level of MMP present in synovial tissues of RA patients would facilitate the release of drugs in response and ascertain controlled drug release. The formulation is designed to be stable within the joint environment, but to dis-assemble in response to inflammation. The synthesized enzyme-responsive methotrexate (Mtx) encapsulated micron-sized polymer-lipid hybrid hydrogel microspheres (Mtx-PLHM) was physiochemically characterized and tested in synovial fluid, Human Fibroblast like synoviocytes (h-FLS) (derived from RA patients) and a rat arthritic animal model. Mtx-PLHM can self-actuate and augment the release of Mtx drug upon contact with either exogenously added MMP or endogenous MMP present in the synovial fluid of patients with RA. The drug release from the prepared formulation is significantly amplified to several folds in the presence of MMP-2 and MMP-9 enzymes. In the rat arthritic model, Mtx-PLHM showed promising therapeutic results with the significant alleviation of RA symptoms through decrease in joint inflammation, swelling, bone erosion, and joint damage examined by X-ray analysis, histopathology and immune-histology. This drug delivery system would be nontoxic as it releases more drug only during the period of exacerbation of inflammation. This will simultaneously protect patients from unwanted side effects when the disease is inactive and lower the need for repeated joint injections.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Preparaciones de Acción Retardada , Hidrogeles , Metotrexato , Microesferas , Sinoviocitos , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Humanos , Metotrexato/farmacología , Metotrexato/uso terapéutico , Metotrexato/química , Metotrexato/administración & dosificación , Hidrogeles/química , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/patología , Ratas , Antirreumáticos/farmacología , Antirreumáticos/administración & dosificación , Antirreumáticos/uso terapéutico , Antirreumáticos/farmacocinética , Liberación de Fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Masculino , Inflamación/tratamiento farmacológico , Inflamación/patología , Metaloproteinasas de la Matriz/metabolismo , Líquido Sinovial/efectos de los fármacos , Líquido Sinovial/metabolismo
6.
Biomater Adv ; 154: 213594, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657277

RESUMEN

The rise of tuberculosis (TB) superbugs has impeded efforts to control this infectious ailment, and new treatment options are few. Paradoxical Inflammation (PI) is another major problem associated with current anti-TB therapy, which can complicate the treatment and leads to clinical worsening of disease despite a decrease in bacterial burden in the lungs. TB infection is generally accompanied by an intense local inflammatory response which may be critical to TB pathogenesis. Clofazimine (CLF), a second-line anti-TB drug, delineated potential anti-mycobacterial effects in-vitro and in-vivo and also demonstrated anti-inflammatory potential in in-vitro experiments. However, clinical implications may be restricted owing to poor solubility and low bioavailability rendering a suboptimal drug concentration in the target organ. To unravel these issues, nanocrystals of CLF (CLF-NC) were prepared using a microfluidizer® technology, which was further processed into micro-sized CLF nano-clusters (CLF-NCLs) by spray drying technique. This particle engineering offers combined advantages of micron- and nano-scale particles where micron-size (∼5 µm) promise optimum aerodynamic parameters for the finest lung deposition, and nano-scale dimensions (∼600 nm) improve the dissolution profile of apparently insoluble clofazimine. An inhalable formulation was evaluated against virulent mycobacterium tuberculosis in in-vitro studies and in mice infected with aerosol TB infection. CLF-NCLs resulted in the significant killing of virulent TB bacteria with a MIC value of ∼0.62 µg/mL, as demonstrated by Resazurin microtiter assay (REMA). In TB-infected mice, inhaled doses of CLF-NCLs equivalent to ∼300 µg and âˆ¼ 600 µg of CLF administered on every alternate day over 30 days significantly reduced the number of bacteria in the lung. With an inhaled dose of ∼600 µg/mice, reduction of mycobacterial colony forming units (CFU) was achieved by ∼1.95 Log10CFU times compared to CLF administered via oral gavage (∼1.18 Log10CFU). Lung histology scoring showed improved pathogenesis and inflammation in infected animals after 30 days of inhalation dosing of CLF-NCLs. The levels of pro-inflammatory mediators, including cytokines, TNF-α & IL-6, and MMP-2 in bronchoalveolar lavage fluid (BAL-F) and lung tissue homogenates, were attenuated after inhalation treatment. These pre-clinical data suggest inhalable CLF-NCLs are well tolerated, show significant anti-TB activity and apparently able to tackle the challenge of paradoxical chronic lung inflammation in murine TB model.


Asunto(s)
Neumonía , Tuberculosis , Ratones , Animales , Clofazimina/farmacología , Clofazimina/uso terapéutico , Aerosoles y Gotitas Respiratorias , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Neumonía/tratamiento farmacológico , Inflamación/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA