Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 460: 132126, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657319

RESUMEN

Solidification of soluble arsenic from extremely acidic water and direct use of recovery water have been the major challenges in global water management, with the urgent need for new treatment system development. Thus, magnetic adsorption - fertilizer drawn forward osmosis (FDFO) hybrid system with a novel adsorbent and fertilizer mixture to solve the drawbacks of each process was developed with the ultimate goals of metal removal and direct reuse for hydroponic irrigation. Magnetic metal-organic framework-based adsorbent (CMM) was synthesized with various promising capabilities, i.e., wide pH range efficiency, strong pH adjustment, good stability, fast adsorption (1 h), and oxidation (40 min), high capacity (175 and 126 mg/g for As(III), As(V)), strong magnetization (75 emu/g), complete separation by a magnet, excellent interference-tolerance and reusability. In the FDFO system, a massive water volume (50 times higher than the initial draw solution with suitable nutrients for hydroponics irrigation with acceptable NaCl levels was obtained for the first time up to now. However, low As(III) rejection (50%) required the FDFO process to improve more. After integrating with magnetic adsorption, nearly 100% of As was removed. The pH of feed solutions adjusted from extremely acidic to close to neutral conditions further solidified metal by precipitation and membrane separation processes, leading to almost no detection of metals in the final draw solution. Also, favorable nutrients and excellent reusability were obtained. This hybrid process would generally offer an environmentally sustainable and high efficiency for decontaminating As-containing heavy metal water for hydroponic irrigation.

3.
Chemosphere ; 303(Pt 2): 134897, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35636599

RESUMEN

Ultrafiltration (UF) membranes are considered a pre-treatment for brackish water reverse osmosis (BWRO) membranes because of the high rejection rate of particulates and the productivity of the final water quantity. This study presents the performance and membrane surface property analysis of UF membranes for commercial membrane manufacturers, and their structural strength and chemical resistance were evaluated. Moreover, the pilot-scale UF-BWRO process was operated for two months using real wastewater based on the results of this study. Although the overall properties were similar, the poly (ether-sulfone) UF membrane showed higher tensile strength than the polyvinylidene difluoride and polyacrylonitrile UF membranes. The UF membrane showed a high removal rate of particulates (over 90%) but low rejection rate of organic compounds, such as humic acid and sodium alginate (below 30%). After exposure to high concentrations of chemicals, the contact angle of the membranes was reduced by approximately 15% compared to that of the virgin membranes. In addition, despite the exposure to low-and high-concentration chemicals, UF membranes were relatively stable in terms of tensile strength. During the operation period of the pilot-scale UF-RO process, the UF membrane showed a high turbidity removal of over 93%, and the UF-BWRO process presented a high salt rejection of over 92%. The UF membrane showed potential for the pre-treatment of BWRO membranes.


Asunto(s)
Ultrafiltración , Purificación del Agua , Membranas Artificiales , Ósmosis , Aguas Salinas , Ultrafiltración/métodos , Aguas Residuales/análisis , Purificación del Agua/métodos
4.
ACS Appl Mater Interfaces ; 12(9): 10268-10279, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32039578

RESUMEN

Developing novel cathode materials with a high energy density and long cycling stability is necessary for Na-ion batteries and Na-ion hybrid capacitors (NICs). Despite their high energy density, structural flexibility, and ease of synthesis, P-type Na layered oxides cannot be utilized in energy-storage applications owing to their severe capacity fading. In this regard, we report a novel composite layered-tunnel Na0.5Mn0.5Co0.48Mg0.02O2 cathode whose binary structure was confirmed via scanning electron microscopy and high-resolution transmission electron microscopy. Combination of the two-dimensional (2D) layered oxides with the three-dimensional tunnel structure, as well as the presence of Mg2+ ions, resulted in a high capacity of 145 mAh g-1 at a current density of 85 mA g-1, along with a high stability and rate capability. An NIC was fabricated with composite layered-tunnel structure as a battery-type electrode and commercial activated carbon as a counter electrode. The NIC exhibited a maximum energy density of 35 Wh kg-1 and good stability retaining 72% of its initial energy density after 3000 cycles. This integrated approach provides a new method for designing high-energy and high-power cathodes for NICs and NIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA