Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202301827, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985026

RESUMEN

Extensive research is underway to achieve carbon neutrality through the production of green hydrogen via water electrolysis, powered by renewable energy. Polymer membrane water electrolyzers, such as proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE), are at the forefront of this research. Developing highly active and durable electrode catalysts is very important for commercializing these electrolyzers. However, most research is conducted in half-cell setups, which may not fully represent the catalysts' effectiveness in membrane-electrode-assembly (MEA) devices. This review explores the catalysts developed for high-performance PEMWE and AEMWE MEA systems. Only the catalysts reporting the MEA performance were discussed in this review. In PEMWE, strategies aim to minimize Ir use for oxygen evolution reaction (OER) by maximizing activity, employing metal oxide-based supports, integrating secondary elements into IrOx lattices, or exploring non-Ir materials. For AEMWE, the emphasis is on enhancing the performance of NiFe-based and Co-based catalysts by improving electrical conductivity and mass transport. Pt-based and Ni-based catalysts for hydrogen evolution reaction (HER) in AEMWE are also examined. Additionally, this review discusses the unique considerations for catalysts operating in pure water within AEMWE systems.

2.
Nanoscale ; 14(26): 9297-9303, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35748756

RESUMEN

Large-scale CO2 electrolysis can be applied to store renewable energy in chemicals. Recent developments in gas diffusion electrodes now enable a commercially relevant current density. However, the low selectivity of the CO2 reduction reaction (CO2RR) still hinders practical applications. The selectivity of the CO2RR highly depends on the electrocatalyst. Sn catalysts are considered promising cathode materials for the production of formic acid. The selectivity of Sn catalysts can be regulated by controlling their morphology or alloying them with secondary metals. Herein, we enhanced the selectivity of CO2 reduction to formic acid by synthesizing Sn-Cu@Sn dendrites that have a core@shell architecture. The Sn-Cu@Sn dendrites were prepared by a scalable electro-deposition method. The electronic structure was modified to suppress a reaction pathway for CO production on the Sn surface. Notably, the Sn shell inhibited the cathodic corrosion of Cu during the CO2RR. On a gas diffusion electrode, the Sn-Cu@Sn dendrites exhibited 84.2% faraday efficiency to formic acid for 120 h with high stability.

3.
ACS Appl Mater Interfaces ; 13(31): 37179-37186, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34251792

RESUMEN

Much effort has been devoted to developing electrocatalysts applicable to anion exchange membrane water electrolyzers (AEMWEs). Among many candidates for oxygen evolution reaction, NiFe-layered double hydroxide (LDH)-based electrocatalysts show the highest activity in an alkaline medium. Unfortunately, the poor electrical conductivity of NiFe-LDH limits its potential as an electrocatalyst, which was often solved by hybridization with conductive carbonaceous materials. However, we find that using carbonaceous materials for anodes has detrimental effects on the stability of AEMWEs at industrially relevant current densities. In this work, a facile monolayer structuring is suggested to overcome low electrical conductivity and improve mass transport without using carbonaceous materials. The monolayer NiFe-LDH deposited on Ni foam showed much better AEMWE performance than conventional bulk NiFe-LDH due to better electrical conductivity and higher hydrophilicity. A high energy conversion efficiency of 72.6% and outstanding stability at a current density of 1 A cm-2 over 50 h could be achieved without carbonaceous material. This work highlights electrical conductivity and hydrophilicity of catalysts in membrane-electrode-assembly as key factors for high-performance AEMWEs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA