Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(43): 12366-12378, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969595

RESUMEN

Controlling the movement in artificial molecular machines is a key challenge that needs to be solved before their full potential can be harnessed. In this study, two isomeric tri-stable [2]rotaxanes 1·4PF6 and 2·4PF6 incorporating both a tetrathiafulvalene (TTF) and a monopyrrolotetrathiafulvalene (MPTTF) unit in the dumbbell component have been synthesised to measure the energy barriers when the tetracationic cyclobis(paraquat-p-phenylene) (CBPQT4+) ring moves across either a TTF2+ or an MPTTF2+ dication. By strategically exchanging one of the thiomethyl barriers on either the TTF unit or the MPTTF unit with the bulkier thioethyl group, the movement of the CBPQT4+ ring in 14+ and 24+ can be controlled to take place in only one direction upon tetra-oxidation. Cyclic voltammetry and 1H NMR spectroscopy were used to investigate the switching mechanism and it was found that upon tetra-oxidation of 14+ and 24+, the CBPQT4+ ring moves first to a position where it is located between the TTF2+ and MPTTF2+ dications producing high-energy co-conformations which slowly interconvert into thermodynamically more stable co-conformations. The kinetics of the movement occurring in the tetra-oxidised [2]rotaxanes 18+ and 28+ were studied at different temperatures allowing the free energy of the transition state, when CBPQT4+ moves across TTF2+ (21.5 kcal mol-1) and MPTTF2+ (20.3 kcal mol-1) at 298 K, to be determined. These results demonstrate for the first time that the combination of a TTF and an MPTTF unit can be used to induce directional movement of the CBPQT4+ ring in molecular machines with a 90% efficiency.

2.
Chem Commun (Camb) ; 59(42): 6335-6338, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37067575

RESUMEN

The unique redox properties of monopyrrolotetrathiafulvalene can be used to induce directional movement in interlocked molecules. In this study, the kinetics for the directional movement of cyclobis(paraquat-p-phenylene) across the dioxidised monopyrrolotetrathiafulvalene in a [2]rotaxane is quantified by time-resolved 1H NMR spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA