Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36946, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286146

RESUMEN

Various thermochemical and biochemical processes are resorted to transform agri-wastes into diverse green fuels. Current investigation encompassed three different types of biomass viz., gingelly, kodo millet and horse grams, whose desirability as biofuel feedstock have been largely unexplored till date. The existence of significant amount of cellulose (38.07 %), volatiles (75.19 %), calorific value (avg. 16.98 MJ/kg) in the gingelly biomass, demonstrates the effectiveness of the concerned biomass for utilization as feedstock in diverse industrial applications. The mean estimates of Eα were lower for kodo millet (approx. 150 kJ/mole), followed by gingelly (approx. 178 kJ/mole) and horse gram (approx. 180 kJ/mole). The mean estimates of ΔHα were 174.81 (FWO), 170.22 (KAS), 169.17 (S) and 170.40 (T) kJ/mol for the gingelly biomass. The mean estimates of ΔHα were 147.83 (FWO), 148.81 (KAS), 147.93 (S) and 149.04 (T) kJ/mol for kodo millet biomass, while for horse gram biomass, mean estimates of ΔHα were 178.91 (FWO), 169.61 (KAS), 168.56 (S) and 168.81 (T) kJ/mol. The minor difference of 3-4 kJ/mole between Aα and Hα, signifies the viability of the thermal disintegration process. From master plot, it's evident that the experimental curve intersects multiple theoretical curves, highlighting the intricate characteristics of the thermal disintegration process. The overall ethanol recovery was highest in gingelly as compared to both the biomasses. Gingelly biomass yielded an ethanol titer of 24.8 g/L after 24 h, resulting in a volumetric ethanol productivity of 1.03 g/L/h and an ethanol yield of 0.36 g/g.

2.
RSC Adv ; 14(14): 10089-10103, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38566836

RESUMEN

The exponential growth of industrial activities has led to a significant rise in the release of organic effluents, containing hazardous heavy metals and dyes, into the environment. These pollutants exhibit resistance to conventional biodegradation processes and are associated with carcinogenic properties, posing a severe threat to living organisms. In this context, the present research endeavours to address this environmental challenge through the development of an affordable and efficient photocatalyst, the Co3O4/reduced graphene oxide/biochar (CBG-10) heterostructure. The structural analysis of CBG-10, conducted through various techniques such as XRD, XPS, SEM, and optical property measurements, demonstrates its potential as a highly effective and easily recoverable catalyst for the mineralization of persistent pollutants like methylene blue, malachite green, and hexavalent Cr(vi). The recyclability of CBG-10 was confirmed through XRD studies, highlighting its stability and practical usability in wastewater purification. The photocatalytic behaviour of the catalyst was attributed to the generation of hydroxyl (˙OH) and superoxide radicals (˙O2-) during visible light illumination, as revealed by quenching experiments. The cost-effectiveness and stability of CBG-10 position it as a promising solution for addressing the challenges associated with the removal of stubborn organic contaminants from wastewater, thereby contributing to environmental protection and public health.

3.
Mol Biol Rep ; 50(7): 5535-5545, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37155011

RESUMEN

BACKGROUND: Lignocellulosic biomass from rice straw possesses enormous potential in generating bioenergy thereby reducing the dependence of human on non-renewable fuel sources. Developing rice varieties of such calibre necessitates biochemical characterization as well as assessing the presence of genetic diversity among the rice genotypes with respect to cellulose content. METHODS AND RESULTS: Forty-three elite rice genotypes were selected for biochemical characterization and SSR marker-based genetic fingerprinting. For genotyping, 13 cellulose synthase specific polymorphic markers were used. The diversity analysis was performed using TASSEL 5.0 and GenAlE × 6.51b2, software program. Of the 43 rice varieties, CR-Dhan-601, CR-Dhan-1014, Mahanadi, Jagabandhu, Gouri, Samanta and Chandrama were found to possess desirable lignocellulosic composition with respect to harnessing green fuels. The marker OsCESA-1.3 expressed the highest PIC (0.640), while the marker OsCESA-6.3 of lowest PIC (0.128). A moderate average estimate (0.367) of PIC was observed under current set of genotypes and marker system. The dendrogram analysis grouped the rice genotypes into two principal clusters i.e., cluster I and II. Cluster-II is monogenetic, while cluster-I is having 42 genotypes. CONCLUSIONS: The moderate level of both PIC and H average estimates indicate the narrow genetic bases of the germplasms. The varieties falling under different clusters possessing desirable lignocellulosic composition can be used in a hybridization programme to develop bioenergy efficient varieties. The promising varietal combinations that can be used as parents for developing bioenergy efficient genotypes are Kanchan / Gobinda, Mahanadi / Ramachandi, Mahanadi / Rambha, Mahanadi / Manika, Rambha / Manika, Rambha / Indravati and CR-Dhan-601 / Manika as they offer an advantage of higher cellulose accumulation. This study helped in identification of suitable dual purpose rice varieties for biofuel production without compromising food security.


Asunto(s)
Oryza , Humanos , Oryza/genética , Filogenia , Repeticiones de Microsatélite/genética , Alelos , Genotipo , Celulosa , Variación Genética/genética
4.
Bioresour Technol ; 367: 128231, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36332863

RESUMEN

Several biochemical and thermochemical routes including pyrolysis, liquefaction, combustion and gasification are used to convert biomass to several bioproducts and green fuels. The current investigation included two important biomass namely, little millet stem (LMS) and sunflower stem (SS), whose potentiality as useful feedstocks is largely unexplored. The presence of considerable level of cellulose accumulation (approx. 30 %), volatiles (approx. 67 %) and high heating value (approx. 14 MJ/kg) in both the biomass, inferred their potentiality to be used as feedstocks in the pyrolysis process. The estimate of activation energy for LMS was reported as 191.14 kJ/mol (FWO), 191.46 kJ/mol (KAS) whereas for SS, the activation energy was estimated as 166.52 kJ/mol (FWO) and 162.68 kJ/mol (KAS). The difference between change in enthalpy and activation energy was small (5 to 6 kJ/mol) for both the biomasses, indicating the feasibility of combustion process. From Z(α) analyses, the experimental curve was seen passing through different theoretical curves, indicating complex nature of pyrolysis process for both the biomass.


Asunto(s)
Helianthus , Panicum , Pirólisis , Biomasa , Cinética , Termogravimetría , Termodinámica
5.
Chemosphere ; 256: 127126, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32470736

RESUMEN

Rapid industrialization and consumption of fossil fuels have led to considerable progress in the production of renewable biofuels like bioethanol. Lignocellulosic biomass such as grasses serves as cheap feedstocks for the production of bioethanol. However, the process involved in lignocellulosic bioethanol production is expensive which restricts its industrial production. The present study thus attempted to investigate a partially consolidated bioprocessing (PCB) approach using two isolated anaerobic thermophiles i.e. Bacillus paranthracis and Bacillus nitratireducens for direct conversion of ultra-sonication assisted sodium hydroxide (UA-NaOH) pretreated Denannath grass to bioethanol in co-culture consortium batch fermentation experiments. The process parameters for the PCB approach were optimized using the Box-Behnken design of Response Surface Methodology (RSM). The parameters that were considered were substrate concentration (5-10 g), incubation time (30-66 h), inoculum volume [1:1 to 3:3 (% v/v) and temperature (50-65 °C). The maximum ethanol concentration of 8.46 mM (0.39 g/L from 7.5 g/L of substrate loading) and ethanol yield (Yp/s) of 0.55 g/g of reducing sugar was obtained at 57.5 °C. In the same conditions the cellulase and xylanase activities were 0.8 U/mL and 11.53 U/mL respectively, while the lactate and acetate concentrations were 0.2 mM (0.009 g/L) and 2.9 mM (0.13 g/L) correspondingly. An increase in the substrate loadings to 250 g/L in a batch fermenter (3 L) resulted in the production of 373.35 mM (17.1 g/L) of ethanol concentration and Yp/s of 0.16 g/g of reducing sugar.


Asunto(s)
Bacillus/metabolismo , Biocombustibles/análisis , Reactores Biológicos/microbiología , Etanol/análisis , Pennisetum/metabolismo , Anaerobiosis , Biomasa , Carbohidratos , Celulasa/metabolismo , Fermentación , Hidrólisis , Hidróxido de Sodio
6.
Heliyon ; 6(2): e02693, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32090179

RESUMEN

Multi-drug resistant in Mycobacterium tuberculosis (M.tb) is considered as major bottleneck in the treatment and cure of tuberculosis (TB). Several anti-tubercular drugs fail in its efficacy due to drug-resistant M.tb developed mechanism for resistance. So, research across globe has been carried out to develop effective anti-TB drugs to improve the treatment of these strains. Traditional drug development methods have been proved unsuccessful as it fails to develop a broad-spectrum drug due to lack of structure based approach. Several studies have been conducted in this regard and identified several drug target sites that influence drug-resistant M.tb strains. In this study, the attempt was to study the interaction between the protein Arabinosyltransferase C with the two existing drugs (Ethambutol and Isoniazid) and five modified molecules derived from Ethambutol by calculating their binding affinity and mode of binding through molecular docking study using AutoDock 4. From the comparison study of the existing drug (EMB and INH) and the five proposed modified molecules (Emb1, Emb2, Emb3, Emb4 and Emb5), it is analysed that Emb1 and Emb3 with binding affinities -5.77 kcal/mol and -5.13 kcal/mol respectively can be considered as potential inhibitors of Arabinosyltransferase C in Mycobacterium tuberculosis which is responsible for cell wall synthesis. The facts provided may be further verified experimentally for future drug discovery process to make a stand against tuberculosis and contribute an advance research for worthy antimycobacterial strategies.

7.
J Clin Diagn Res ; 11(6): SD01-SD02, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28764258

RESUMEN

Apple-peel type of intestinal atresia and non-communicating jejunal duplication cyst are rare congenital malformations. The coexistence is not reported in English literature. A five-day-old female neonate having intestinal obstruction and was found to have both the anomalies during laparotomy and was successfully managed. Being an extremely uncommon association between two congenital anomalies of gastrointestinal tract and surgical emergencies, it is reported with review of relevant literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA