RESUMEN
Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species' entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world's jaguar population at 173,000 (95% CI: 138,000-208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions.
Asunto(s)
Panthera/fisiología , Animales , Conservación de los Recursos Naturales , Ecosistema , Modelos Teóricos , Densidad de PoblaciónRESUMEN
Although most often considered independently, subsistence hunting, domestic trade, and international trade as components of illegal wildlife use (IWU) may be spatially correlated. Understanding how and where subsistence and commercial uses may co-occur has important implications for the design and implementation of effective conservation actions. We analyzed patterns in the joint geographical distribution of illegal commercial and subsistence use of multiple wildlife species in Venezuela and evaluated whether available data were sufficient to provide accurate estimates of the magnitude, scope, and detectability of IWU. We compiled records of illegal subsistence hunting and trade from several sources and fitted a random-forest classification model to predict the spatial distribution of IWUs. From 1969 to 2014, 404 species and 8,340,921 specimens were involved in IWU, for a mean extraction rate of 185,354 individuals/year. Birds were the most speciose group involved (248 spp.), but reptiles had the highest extraction rates (126,414 individuals/year vs. 3,133 individuals/year for birds). Eighty-eight percent of international trade records spatially overlapped with domestic trade, especially in the north and along the coast but also in western inland areas. The distribution of domestic trade was broadly distributed along roads, suggesting that domestic trade does not depend on large markets in cities. Seventeen percent of domestic trade records overlapped with subsistence hunting, but the spatial distribution of this overlap covered a much larger area than between commercial uses. Domestic trade seems to respond to demand from rural more than urban communities. Our approach will be useful for understanding how IWU works at national scales in other parts of the world.