Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 18(4)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37187175

RESUMEN

A transient two-dimensional acoustic boundary element solver is coupled to a potential flow boundary element solver via Powell's acoustic analogy to determine the acoustic emission of isolated hydrofoils performing biologically-inspired motions. The flow-acoustic boundary element framework is validated against experimental and asymptotic solutions for the noise produced by canonical vortex-body interactions. The numerical framework then characterizes the noise production of an oscillating foil, which is a simple representation of a fish caudal fin. A rigid NACA 0012 hydrofoil is subjected to combined heaving and pitching motions for Strouhal numbers (0.03

Asunto(s)
Peces , Natación , Animales , Fenómenos Biomecánicos , Movimiento (Física)
2.
Integr Comp Biol ; 60(5): 1025-1035, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33220059

RESUMEN

Animal wings produce an acoustic signature in flight. Many owls are able to suppress this noise to fly quietly relative to other birds. Instead of silent flight, certain birds have conversely evolved to produce extra sound with their wings for communication. The papers in this symposium synthesize ongoing research in "animal aeroacoustics": the study of how animal flight produces an acoustic signature, its biological context, and possible bio-inspired engineering applications. Three papers present research on flycatchers and doves, highlighting work that continues to uncover new physical mechanisms by which bird wings can make communication sounds. Quiet flight evolves in the context of a predator-prey interaction, either to help predators such as owls hear its prey better, or to prevent the prey from hearing the approaching predator. Two papers present work on hearing in owls and insect prey. Additional papers focus on the sounds produced by wings during flight, and on the fluid mechanics of force production by flapping wings. For instance, there is evidence that birds such as nightbirds, hawks, or falcons may also have quiet flight. Bat flight appears to be quieter than bird flight, for reasons that are not fully explored. Several research avenues remain open, including the role of flapping versus gliding flight or the physical acoustic mechanisms by which flight sounds are reduced. The convergent interest of the biology and engineering communities on quiet owl flight comes at a time of nascent developments in the energy and transportation sectors, where noise and its perception are formidable obstacles.


Asunto(s)
Vuelo Animal , Estrigiformes , Animales , Insectos , Sonido , Alas de Animales
3.
Proc Math Phys Eng Sci ; 473(2205): 20170266, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28989307

RESUMEN

This theoretical study determines the aerodynamic loads on an aerofoil with a prescribed porosity distribution in a steady incompressible flow. A Darcy porosity condition on the aerofoil surface furnishes a Fredholm integral equation for the pressure distribution, which is solved exactly and generally as a Riemann-Hilbert problem provided that the porosity distribution is Hölder-continuous. The Hölder condition includes as a subset any continuously differentiable porosity distributions that may be of practical interest. This formal restriction on the analysis is examined by a class of differentiable porosity distributions that approach a piecewise, discontinuous function in a certain parametric limit. The Hölder-continuous solution is verified in this limit against analytical results for partially porous aerofoils in the literature. Finally, a comparison made between the new theoretical predictions and experimental measurements of SD7003 aerofoils presented in the literature. Results from this analysis may be integrated into a theoretical framework to optimize turbulence noise suppression with minimal impact to aerodynamic performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA