Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39028480

RESUMEN

PURPOSE: Lumbar discectomy is among the most common spine procedures in the US, with 300,000 procedures performed each year. Like other surgical procedures, this procedure is not excluded from potential complications. This paper presents a video annotation methodology for microdiscectomy including the development of a surgical workflow. In future work, this methodology could be combined with computer vision and machine learning models to predict potential adverse events. These systems would monitor the intraoperative activities and possibly anticipate the outcomes. METHODS: A necessary step in supervised machine learning methods is video annotation, which involves labeling objects frame-by-frame to make them recognizable for machine learning applications. Microdiscectomy video recordings of spine surgeries were collected from a multi-center research collaborative. These videos were anonymized and stored in a cloud-based platform. Videos were uploaded to an online annotation platform. An annotation framework was developed based on literature review and surgical observations to ensure proper understanding of the instruments, anatomy, and steps. RESULTS: An annotated video of microdiscectomy was produced by a single surgeon. Multiple iterations allowed for the creation of an annotated video complete with labeled surgical tools, anatomy, and phases. In addition, a workflow was developed for the training of novice annotators, which provides information about the annotation software to assist in the production of standardized annotations. CONCLUSIONS: A standardized workflow for managing surgical video data is essential for surgical video annotation and machine learning applications. We developed a standard workflow for annotating surgical videos for microdiscectomy that may facilitate the quantitative analysis of videos using supervised machine learning applications. Future work will demonstrate the clinical relevance and impact of this workflow by developing process modeling and outcome predictors.

2.
Int J Comput Assist Radiol Surg ; 19(1): 37-41, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37610604

RESUMEN

PURPOSE: Congenital heart defects are the most common birth defects in the USA and in 25% of cases need to be treated with cardiovascular interventions. One of such interventions is the postoperative use of an extracorporeal membrane oxygenation (ECMO) machine for the treatment of cardiorespiratory failure. The process of placing the patient on the ECMO is extremely time-critical and requires the use of cardiac cannulation. For the first time, our team developed and evaluated a new quick-connect cannulation system that allows for rapid, easy, and safe ECMO cannulation in the pediatric population. The design should eliminate the need for purse-string sutures that are currently used to secure cannulas, as the cannulas will be inserted through a port that is glued to the cardiovascular tissue. METHODS: The rapid cannulation assistance device was designed on the SolidWorks computer-aided design software using the dimensions of the commercially available arterial and venous catheters. These designs were then 3D printed, and tensile testing was performed. Then, a flow loop was developed, and cannulation was performed and analyzed on both 3D-printed hearts and porcine hearts. RESULTS: The rapid cannulation assistance device was designed and 3D printed. Tensile testing found that the parts were strong enough to withstand forces that may be introduced in studies. 3D-printed and porcine heart tests with a flow loop found no leakage with the 3D-printed hearts but minimal leaking with the porcine hearts. However, this leakage was observed at the junction between the device and the heart, leading us to believe that a glue better suited to attach the device to the heart would prevent leakage in the future. CONCLUSIONS: This project successfully demonstrated how a rapid cannulation assistance device could be developed and tested. Future studies will be conducted that address device adhesion to the cardiovascular tissue so that accurate pressure and flow rates can be measured. Future studies will also include testing the device in a fluid environment to more effectively analyze the device success and comparing the time required to cannulate using our device compared to the standard of care.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Insuficiencia Cardíaca , Humanos , Niño , Animales , Porcinos , Cateterismo/métodos , Insuficiencia Cardíaca/cirugía , Pulmón , Arterias , Oxigenación por Membrana Extracorpórea/métodos
3.
Int J Comput Assist Radiol Surg ; 18(9): 1673-1678, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37245179

RESUMEN

PURPOSE: Surgical data science is an emerging field focused on quantitative analysis of pre-, intra-, and postoperative patient data (Maier-Hein et al. in Med Image Anal 76: 102306, 2022). Data science approaches can decompose complex procedures, train surgical novices, assess outcomes of actions, and create predictive models of surgical outcomes (Marcus et al. in Pituitary 24: 839-853, 2021; Røadsch et al. in Nat Mach Intell, 2022). Surgical videos contain powerful signals of events that may impact patient outcomes. A necessary step before the deployment of supervised machine learning methods is the development of labels for objects and anatomy. We describe a complete method for annotating videos of transsphenoidal surgery. METHODS: Endoscopic video recordings of transsphenoidal pituitary tumor removal surgeries were collected from a multicenter research collaborative. These videos were anonymized and stored in a cloud-based platform. Videos were uploaded to an online annotation platform. Annotation framework was developed based on a literature review and surgical observations to ensure proper understanding of the tools, anatomy, and steps present. A user guide was developed to trained annotators to ensure standardization. RESULTS: A fully annotated video of a transsphenoidal pituitary tumor removal surgery was produced. This annotated video included over 129,826 frames. To prevent any missing annotations, all frames were later reviewed by highly experienced annotators and a surgeon reviewer. Iterations to annotated videos allowed for the creation of an annotated video complete with labeled surgical tools, anatomy, and phases. In addition, a user guide was developed for the training of novice annotators, which provides information about the annotation software to ensure the production of standardized annotations. CONCLUSIONS: A standardized and reproducible workflow for managing surgical video data is a necessary prerequisite to surgical data science applications. We developed a standard methodology for annotating surgical videos that may facilitate the quantitative analysis of videos using machine learning applications. Future work will demonstrate the clinical relevance and impact of this workflow by developing process modeling and outcome predictors.


Asunto(s)
Algoritmos , Neoplasias Hipofisarias , Humanos , Aprendizaje Automático Supervisado , Endoscopía , Aprendizaje Automático , Estudios Multicéntricos como Asunto
4.
Lasers Surg Med ; 55(5): 480-489, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37003294

RESUMEN

OBJECTIVES: Postoperative bile leakage is a common complication of hepatobiliary surgery and frequently requires procedural intervention. Bile-label 760 (BL-760), a novel near-infrared dye, has emerged as a promising tool for identifying biliary structures and leakage, owing to its rapid excretion and strong bile specificity. This study aimed to assess the intraoperative detection of biliary leakage using intravenously administered BL-760 compared with intravenous (IV) and intraductal (ID) indocyanine green (ICG). MATERIALS AND METHODS: Laparotomy and segmental hepatectomy with vascular control were performed on two 25-30 kg pigs. ID ICG, IV ICG, and IV BL-760 were administered separately, followed by an examination of the liver parenchyma, cut liver edge, and extrahepatic bile ducts for areas of leakage. The duration of intra- and extrahepatic fluorescence detection was assessed, and the target-to-background (TBR) of the bile ducts to the liver parenchyma was quantitatively measured. RESULTS: In Animal 1, after intraoperative BL-760 injection, three areas of leaking bile were identified within 5 min on the cut liver edge with a TBR of 2.5-3.8 that was not apparent to the naked eye. In contrast, after IV ICG administration, the background parenchymal signal and bleeding obscured the areas of bile leakage. A second dose of BL-760 demonstrated the utility of repeated injections, confirming two of the three previously visualized areas of bile leakage and revealing one previously unseen leak. In Animal 2, neither ID ICG nor IV BL-760 injections showed obvious areas of bile leakage. However, fluorescence signals were observed within the superficial intrahepatic bile ducts after both injections. CONCLUSIONS: BL-760 enables the rapid intraoperative visualization of small biliary structures and leaks, with the benefits of fast excretion, repeatable intravenous administration, and high-fluorescence TBR in the liver parenchyma. Potential applications include the identification of bile flow in the portal plate, biliary leak or duct injury, and postoperative monitoring of drain output. A thorough assessment of the intraoperative biliary anatomy could limit the need for postoperative drain placement, a possible contributor to severe complications and postoperative bile leak.


Asunto(s)
Bilis , Colorantes Fluorescentes , Porcinos , Animales , Hepatectomía/efectos adversos , Conductos Biliares/diagnóstico por imagen , Conductos Biliares/cirugía , Conductos Biliares/lesiones , Verde de Indocianina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA