Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Phytoremediation ; : 1-12, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189076

RESUMEN

The article details a feasibility study of removing Brilliant Green (BG), a mutagenic dye from an aqueous solution by adsorption using low-cost coriander seed spent as a by-product in the nutraceutical industry. The study includes an analysis of the parameters that affect the adsorption process. The variables that have been identified include pH, dye concentration, process temperature, adsorbent amount, and particle size of the adsorbent. To obtain information on the adsorption process and to design the mechanism of the adsorption system on experimental equilibrium, 10 isotherm models, namely, Langmuir, Freundlich, Jovanovic, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Vieth-Sladek, Brouers-Sotolongo, and Radke-Prausnitz were applied. It was discovered that the experimental adsorption capacity, qe, was roughly 110 mg g-1. The result has a maximum adsorption of 136.17 mg g-1 as predicted by Dubinin-Radushkevich isotherm. Diffusion film models, Dumwald-Wagner and Weber-Morris models, and pseudo-first- and second-order models, were used to determine the adsorption kinetics. It was realized that the adsorption kinetics data fit into a pseudo-second-order model. Thermodynamic analysis with a reduced enthalpy change suggests a physical process. The values of the thermodynamic parameters ΔG0, ΔH0, and ΔS0 demonstrated an endothermic and nearly spontaneous process of adsorption. The small valuation of ΔH0 specifies that the process is physical. FTIR spectroscopy and SEM imaging were used to confirm that the BG dye had been adsorbing on the adsorbent surface. The study concludes that NICSS is an effective adsorbent to extract BG dye from wastewater solutions, offers insights into numerous dye and adsorbent interaction possibilities and indicates that the process can be scaled to fit into the concept of circular economy.


An attempt has been made to link the concept of circular economy through design and execution of the experiments in the laboratory scale. The following highlights will justify the newer approach adopted by the authors.The experiments are designed by intention to suit the concept of circular economy.The use of NICSS, a nutraceutical industrial spent, which has no feed, fertilizer, or fuel value suits the sustainability concept.The reuse of "waste" from the remediation process replaces the "end-of-life" concept in circular economy.

2.
Heliyon ; 10(3): e25407, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38371991

RESUMEN

Integration of photovoltaic (PV) systems, desalination technologies, and Artificial Intelligence (AI) combined with Machine Learning (ML) has introduced a new era of remarkable research and innovation. This review article thoroughly examines the recent advancements in the field, focusing on the interplay between PV systems and water desalination within the framework of AI and ML applications, along with it analyses current research to identify significant patterns, obstacles, and prospects in this interdisciplinary field. Furthermore, review examines the incorporation of AI and ML methods in improving the performance of PV systems. This includes raising their efficiency, implementing predictive maintenance strategies, and enabling real-time monitoring. It also explores the transformative influence of intelligent algorithms on desalination techniques, specifically addressing concerns pertaining to energy usage, scalability, and environmental sustainability. This article provides a thorough analysis of the current literature, identifying areas where research is lacking and suggesting potential future avenues for investigation. These advancements have resulted in increased efficiency, decreased expenses, and improved sustainability of PV system. By utilizing artificial intelligence technologies, freshwater productivity can increase by 10 % and efficiency. This review offers significant and informative perspectives for researchers, engineers, and policymakers involved in renewable energy and water technology. It sheds light on the latest advancements in photovoltaic systems and desalination, which are facilitated by AI and ML. The review aims to guide towards a more sustainable and technologically advanced future.

3.
Chemosphere ; 353: 141540, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423144

RESUMEN

The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.


Asunto(s)
Biocombustibles , Microalgas , Animales , Fotobiorreactores , Biomasa , Estadios del Ciclo de Vida
4.
Environ Pollut ; 326: 121474, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965686

RESUMEN

Recently, solar photovoltaic (PV) technology has shown tremendous growth among all renewable energy sectors. The attractiveness of a PV system depends deeply of the module and it is primarily determined by its performance. The quantity of electricity and power generated by a PV cell is contingent upon a number of parameters that can be intrinsic to the PV system itself, external or environmental. Thus, to improve the PV panel performance and lifetime, it is crucial to recognize the main parameters that directly influence the module during its operational lifetime. Among these parameters there are numerous factors that positively impact a PV system including the temperature of the solar panel, humidity, wind speed, amount of light, altitude and barometric pressure. On the other hand, the module can be exposed to simultaneous environmental stresses such as dust accumulation, shading and pollution factors. All these factors can gradually decrease the performance of the PV panel. This review not only provides the factors impacting PV panel's performance but also discusses the degradation and failure parameters that can usually affect the PV technology. The major points include: 1) Total quantity of energy extracted from a photovoltaic module is impacted on a daily, quarterly, seasonal, and yearly scale by the amount of dust formed on the surface of the module. 2) Climatic conditions as high temperatures and relative humidity affect the operation of solar cells by more than 70% and lead to a considerable decrease in solar cells efficiency. 3) The PV module current can be affected by soft shading while the voltage does not vary. In the case of hard shadowing, the performance of the photovoltaic module is determined by whether some or all of the cells of the module are shaded. 4) Compared to more traditional forms of energy production, PV systems offer a significant number of advantages to the environment. Nevertheless, these systems can procure greenhouse gas emissions, especially during the production stages. In conclusion, this study underlines the importance of considering multiple parameters while evaluating the performance of photovoltaic modules. Environmental factors can have a major impact on the performance of a PV system. It is critical to consider these factors, as well as intrinsic and other intermediate factors, to optimize the performance of solar energy systems. In addition, continuous monitoring and maintenance of PV systems is essential to ensure maximum efficiency and performance.


Asunto(s)
Gases de Efecto Invernadero , Energía Solar , Polvo/análisis , Humedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA