Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pers Med ; 13(9)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37763083

RESUMEN

HDAC inhibitors (HDACi) hold great potential as anticancer therapies due to their ability to regulate the acetylation of both histone and non-histone proteins, which is frequently disrupted in cancer and contributes to the development and advancement of the disease. Additionally, HDACi have been shown to enhance the cytotoxic effects of DNA-damaging agents such as radiation and cisplatin. In this study, we found that histone deacetylase inhibits valproic acid (VPA), synergized with PARP1 inhibitor (PARPi), talazoparib (BMN-673), and alkylating agent, and temozolomide (TMZ) to induce DNA damage and reduce glioblastoma multiforme. At the molecular level, VPA leads to a downregulation of FANCD2 and RAD51, and the eradication of glioblastoma cells. The results of this study indicate that combining HDACi with PARPi could potentially enhance the treatment of glioblastoma, the most aggressive type of cancer that originates in the brain.

2.
Genes (Basel) ; 14(6)2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372475

RESUMEN

The inhibition of histone deacetylases (HDACs) holds promise as a potential anti-cancer therapy as histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, the use of a histone deacetylase inhibitor (HDACi) such as the class I HDAC inhibitor-valproic acid (VPA) has been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that the use of VPA in combination with talazoparib (BMN-673-PARP1 inhibitor-PARPi) and/or Dacarbazine (DTIC-alkylating agent) resulted in an increased rate of DNA double strand breaks (DSBs) and reduced survival (while not affecting primary melanocytes) and the proliferation of melanoma cells. Furthermore, the pharmacological inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-673. In addition, the inhibition of HDACs causes the sensitization of melanoma cells to DTIV and BMN-673 in melanoma xenografts in vivo. At the mRNA and protein level, the histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study aims to demonstrate that combining an HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is commonly recognized as being among the most aggressive malignant tumors. The findings presented here point to a scenario in which HDACs, via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ácido Valproico/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Dacarbazina/uso terapéutico , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , ADN , Alquilantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA