Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Lett ; 14(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29794008

RESUMEN

Elevated prolactin (PRL) has been associated with the expression of social and cooperative behaviours in a number of vertebrate species, as well as suppression of reproduction. As social mole-rats exhibit both of these traits, PRL is a prime candidate in mediating their social phenotype. While naked and Damaraland mole-rats (NMRs and DMRs) have evolved eusociality independently within their family, both species exhibit an extreme skew in lifetime reproductive success, with breeding restricted to a single female and one or two males. Non-breeding NMRs of both sexes are physiologically inhibited from reproducing, while in DMRs only the non-breeding females are physiologically suppressed. Newly emerging work has implicated the dopamine system and PRL as a component in socially induced reproductive suppression and eusociality in NMR, but the DMR remains unstudied in this context. To investigate evolutionary convergence in the role of PRL in shaping African mole-rat eusociality, we determined plasma PRL concentrations in breeders and non-breeders of both sexes, comparing DMRs with NMRs. Among samples from non-breeding NMRs 80% had detectable plasma PRL concentrations. As a benchmark, these often (37%) exceeding those considered clinically hyperprolactinaemic (25 ng ml-1) in humans: mean ± s.e.m.: 34.81 ± 5.87 ngml-1; range 0.00-330.30 ng ml-1 Conversely, 85% of non-breeding DMR samples had undetectable values and none had concentrations above 25 ng ml-1: 0.71 ± 0.38 ng ml-1; 0.00-23.87 ngml-1 Breeders in both species had the expected variance in plasma PRL concentrations as part of normal reproductive function, with lactating queens having significantly higher values. These results suggest that while elevated PRL in non-breeders is implicated in NMR eusociality, this may not be the case in DMRs, and suggests a lack of evolutionary convergence in the proximate control of the social phenotype in these mole-rats.


Asunto(s)
Ratas Topo/fisiología , Prolactina/sangre , Conducta Sexual Animal/fisiología , Animales , Evolución Biológica , Dominación-Subordinación , Femenino , Infertilidad Femenina/sangre , Infertilidad Masculina/sangre , Lactancia/fisiología , Masculino
2.
Mol Ecol ; 13(5): 1217-29, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15078457

RESUMEN

We report the discovery of intraspecific variation in both colony composition and patterns of paternity in two populations of the social common mole-rat Cryptomys hottentotus hottentotus. These two populations represent the mesic and arid habitat extremes of the species' broad ecological range in South Africa. Until recently colonies of the common mole-rat were thought to consist of familial groups whereby all colony members were the offspring of a monogamous reproductive pair. The remaining colony members were thought to forego reproduction until both social and ecological conditions favoured dispersal and opportunities for independent outbreeding. Results from genetic assignment tests using microsatellite markers indicate that while colony composition is dominated by familial groups, colonies within both populations included both adult and subadult foreign conspecifics. Analysis of parentage reveals that the social organization of C. h. hottentotus is not that of strict monogamy; paternity of offspring was not assigned consistently to the largest, most dominant male within the colony. Moreover, a number of significantly smaller males were found to sire offspring, suggesting a sneak-mating strategy by subordinate within-colony males. Extra-colony extra-pair paternity (ECP) was also found to characterize C. h. hottentotus colonies, occurring with similar frequencies in both habitats. Both dominant established breeding males and subordinate males were identified as siring young in nonsource colonies. Furthermore, established breeding males were found to sire extra-colony young in the same season as siring young within their source colonies. We discuss the significance of these results within the context of the divergent ecological regimes characterizing the two sites and observe that our results revisit the accuracy of using behavioural and morphological characters, which have structured the basis of our understanding of the behavioural ecology of this species, as indicators of breeding status in mark-recapture studies.


Asunto(s)
Ratas Topo/genética , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Conducta Social , Animales , Ambiente , Femenino , Frecuencia de los Genes , Genotipo , Masculino , Repeticiones de Microsatélite/genética , Ratas Topo/fisiología , Sudáfrica
3.
Mol Ecol ; 13(3): 613-29, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14871365

RESUMEN

African mole-rats are subterranean Hystricomorph rodents, distributed widely throughout sub-Saharan Africa, and displaying a range of social and reproductive strategies from solitary dwelling to the 'insect-like' sociality of the naked mole-rat, Heterocephalus glaber. Both molecular systematic studies of Rodentia and the fossil record of bathyergids indicate an ancient origin for the family. This study uses an extensive molecular phylogeny and mitochondrial cytochrome b and 12s rRNA molecular clocks to examine in detail the divergence times, and patterns of speciation of the five extant genera in the context of rift valley formation in Africa. Based on a value of 40-48 million years ago (Myr) for the basal divergence of the family (Heterocephalus), we estimate divergence times of 32-40 Myr for Heliophobius, 20-26 Myr for Georychus/Bathyergus and 12-17 Myr for Cryptomys, the most speciose genus. While early divergences may have been independent of rifting, patterns of distribution of later lineages may have been influenced directly by physical barriers imposed by the formation of the Kenya and Western Rift, and indirectly by accompanying climatic and vegetative changes. Rates of chromosomal evolution and speciation appear to vary markedly within the family. In particular, the genus Cryptomys appears to have undergone an extensive radiation and shows the widest geographical distribution. Of the two distinct clades within this genus, one exhibits considerable karyotypic variation while the other does not, despite comparatively high levels of sequence divergence between some taxa. These different patterns of speciation observed both within the family and within the genus Cryptomys may have been a result of environmental changes associated with rifting.


Asunto(s)
Evolución Molecular , Variación Genética , Ratas Topo/genética , Filogenia , África , Animales , Secuencia de Bases , Cromosomas/genética , ADN Mitocondrial/genética , Geografía , Cariotipificación , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
4.
Oecologia ; 97(2): 222-227, 1994 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28313932

RESUMEN

The thermoregulatory characteristics of three species of Cryptomys from Zambia and Angola are examined and, together with published data on four other species of Cryptomys from southern Africa, used to determine whether scaling occurs in this genus of subterranean rodents. The thermoregulatory properties of acclimated giant Zambian mole-rats, Cryptomys mechowi ([Formula: see text]=267 g), Angolan mole-rats, Cryptomys bocagei ([Formula: see text]=94 g) and Zambian common mole-rats Cryptomys hottentotus amatus ([Formula: see text]=77 g) are as follows. Mean resting metabolic rates (RMRs) within the respective thermoneutral zones were 0.60±0.08 cm3 O2 g-1 h-1 (n=12) for C. mechowi; 0.74±0.06 cm3 O2 g-1 h-1 (n=8) for C. bocagei and 0.63±0.06 cm3O2 g-1 h-1 (n=21) for C. h. amatus. The thermoneutral zones (TNZs) of all three species are narrow: 29-30°C for C. mechowi; 31.5-32.5°C for C. bocagei and 28-32° C for C. h. amatus. The increase in mean RMR at the lowest temperatures tested (15° C for C. mechowi, 18° C for C. bocagei and C. h. amatus) was 2.35, 2.2 and 3.82 times their RMR in the TNZ respectively. Body temperatures are low, 34±0.53° C (n=24) for C. mechowi, 33.7±0.32° C (n=20) for C. bocagei and 33.8±0.43° C (n=40) for C. h amatus. At the lower limit of thermoneutrality, conductances are 0.09±0.01 cm3 O2 g-1 h-1 °C-1 (n=30) in C. mechowi; 0.12±0.01 cm3 O2 g-1 h-1 °C-1 (n=20) in C. bocagei and 0.12±0.03 cm3 O2 g-1 h-1 °C-1 (n=32) in C. h. amatus. The range in mean body mass among the seven species of Cryptomys examined for scaling was 60 g (C. darlingi) to 267 g (C. mechowi). There is no clear relationship between RMR within the TNZ and body mass. The resultant relationship is represented by the power curve RMR=2.45 mass-0.259.

5.
Oecologia ; 66(1): 81-87, 1985 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28310816

RESUMEN

At 22°C the resting oxygen consumption of G. capensis is 1.13±0.05 cm3O2·g-1·h-1 (mean± S.E.). In loose sandy soil the burrowing metabolic rate was approximately three times that of resting (3.41±0.19 cm3O2·g-1· h-1). Rate of oxygen consumption while burrowing bears a linear relationship with rate of burrowing. The equation of the regression line describing this relationship was used to construct a model for calculating energy expenditure of burrowing in free-living mole-rats. The diet of G. capensis consists of some green plant material and geophyte corms. The latter has a mean gross energy content of 16.36 kJ·g-1 dry weight. The digestibility coefficient for captive G. capensis fed on sweet potato, was 97.42±0.41%. Data collected from an excavated burrow system revealed that the total energetic cost of constructing the burrow amounted to 79% of the estimated digestible energy available from geophyte corms in the area. A food store in the same burrow system was sufficient to meet the maintenance requirements of an adult G. capensis, resting at 22°C, for approximately 80-85 days. Soil samples taken at random adjacent to the burrow contained corms with a mean estimated digestible energy value of 2084 kJ per m3 of soil. A comparison of energetic cost of burrowing and randomly available digestible energy in the field suggests that foraging patterns are not random.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA