RESUMEN
Ecosystem services of Amazonian forests are disproportionally produced by a limited set of hyperdominant tree species. Yet the spatial variation in the delivery of ecosystem services by individual hyperdominant species across their distribution ranges and corresponding environmental gradients is poorly understood. Here, we use the concept of habitat quality to unravel the effect of environmental gradients on seed production and aboveground biomass (AGB) of the Brazil nut, one of Amazonia's largest and most long-lived hyperdominants. We find that a range of climate and soil gradients create trade-offs between density and fitness of Brazil nut trees. Density responses to environmental gradients were in line with predictions under the Janzen-Connell and Herms-Mattson hypotheses, whereas tree fitness responses were in line with resource requirements of trees over their life cycle. These trade-offs resulted in divergent responses in area-based seed production and AGB. While seed production and AGB of individual trees (i.e., fitness) responded similarly to most environmental gradients, they showed opposite tendencies to tree density for almost half of the gradients. However, for gradients creating opposite fitness-density responses, area-based seed production was invariable, while trends in area-based AGB tended to mirror the response of tree density. We conclude that while the relation between environmental gradients and tree density is generally indicative of the response of AGB accumulation in a given area of forest, this is not necessarily the case for fruit production.
RESUMEN
INTRODUCTION: Defoliation and light competition are ubiquitous stressors that can strongly limit plant performance. Tolerance to defoliation is often associated with compensatory growth, which could be positively or negatively related to plant growth. Genetic variation in growth, tolerance and compensation, in turn, plays an important role in the evolutionary adaptation of plants to changing disturbance regimes but this issue has been poorly investigated for long-lived woody species. We quantified genetic variation in plant growth and growth parameters, tolerance to defoliation and compensation for a population of the understorey palm Chamaedorea elegans. In addition, we evaluated genetic correlations between growth and tolerance/compensation. METHODS: We performed a greenhouse experiment with 711 seedlings from 43 families with twelve or more individuals of C. elegans. Seeds were collected in southeast Mexico within a 0.7 ha natural forest area. A two-third defoliation treatment (repeated every two months) was applied to half of the individuals to simulate leaf loss. Compensatory responses in specific leaf area, biomass allocation to leaves and growth per unit leaf area were quantified using iterative growth models. RESULTS: We found that growth rate was highly heritable and that plants compensated strongly for leaf loss. However, genetic variation in tolerance, compensation, and the individual compensatory responses was low. We found strong correlations between family mean growth rates in control and defoliation treatments. We did not find indications for growth-tolerance/compensation trade-offs: genetic correlation between tolerance/compensation and growth rate were not significant. IMPLICATIONS: The high genetic variation in growth rate, but low genetic variation in tolerance and compensation observed here suggest high ability to adapt to changes in environment that require different growth rates, but a low potential for evolutionary adaptation to changes in damage or herbivory. The strong correlations between family mean growth rates in control and defoliation treatments suggest that performance differences among families are also maintained under stress of disturbance.