Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nucl Med ; 64(1): 124-130, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618478

RESUMEN

Single-domain antibody fragments (sdAbs) are attractive for targeted α-particle therapy, particularly with 211At, because of their rapid accumulation in tumor and clearance from normal tissues. Here, we evaluate the therapeutic potential of this strategy with 5F7 and VHH_1028-2 sdAbs that bind with high affinity to domain IV of human epidermal growth factor receptor type 2 (HER2). Methods: The HER2-specific sdAbs and HER2-irrelevant VHH_2001 were labeled using N-succinimidyl-3-211At-astato-5-guanidinomethyl benzoate (iso-211At-SAGMB). The cytotoxicity of iso- 211At-SAGMB-5F7 and iso- 211At-SAGMB-VHH_2001 were compared on HER2-expressing BT474 breast carcinoma cells. Three experiments in mice with subcutaneous BT474 xenografts were performed to evaluate the therapeutic effectiveness of single doses of iso- 211At-SAGMB-5F7 (0.7-3.0 MBq), iso- 211At-SAGMB-VHH_1028 (1.0-3.0 MBq), and iso- 211At-SAGMB-VHH_1028 and iso- 211At-SAGMB-VHH_2001 (∼1.0 MBq). Results: Clonogenic survival of BT474 cells was reduced after exposure to iso- 211At-SAGMB-5F7 (D0 = 1.313 kBq/mL) whereas iso- 211At-SAGMB-VHH_2001 was ineffective. Dose-dependent tumor growth inhibition was observed with 211At-labeled HER2-specific 5F7 and VHH_1028 but not with HER2-irrelevant VHH_2001. At the 3.0-MBq dose, complete tumor regression was seen in 3 of 4 mice treated with iso- 211At-SAGMB-5F7 and 8 of 11 mice treated with iso- 211At-SAGMB-VHH_1028; prolongation in median survival was 495% and 414%, respectively. Conclusion: Combining rapidly internalizing, high-affinity HER2-targeted sdAbs with the iso- 211At-SAGMB residualizing prosthetic agent is a promising strategy for targeted α-particle therapy of HER2-expressing cancers.


Asunto(s)
Neoplasias de la Mama , Anticuerpos de Dominio Único , Humanos , Animales , Ratones , Femenino , Anticuerpos de Dominio Único/uso terapéutico , Anticuerpos de Dominio Único/metabolismo , Xenoinjertos , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Resultado del Tratamiento
2.
Int J Radiat Biol ; 99(1): 70-76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-32552309

RESUMEN

PURPOSE: 123I-MAPi, a novel PARP1-targeted Auger radiotherapeutic has shown promising results in pre-clinical glioma model. Currently, 123I-MAPi is synthesized using multistep synthesis that results in modest yields and low molar activities (MA) that limits the ability to translate this technology for human studies where high doses are administered. Therefore, new methods are needed to synthesize 123I-MAPi in high activity yields (AY) and improved MA to facilitate clinical translation and multicenter trials. MATERIALS AND METHODS: 123I-MAPi was prepared in a single step via 123I-iododetannylation of the corresponding tributylstannane precursor. In vitro internalization assay, subcellular fractionation and confocal microscopy where used to evaluate the performance of 123I-MAPi in a small cell lung cancer model. RESULTS: 123I-MAPi was synthesized in a single step from the corresponding stannane precursor in AY of 45 ± 2% and MA of 11.8 ± 4.8 GBq µmol-1. In vitro in LX22 cells showed rapid internalization (5 min) with accumulation found predominantly in the membrane, nucleus and chromatin of the cell as determined by subcellular fractionation. CONCLUSIONS: Here, we have developed an improved radiosynthesis of 123I-MAPi, an Auger theranostic agent. This process was achieved using a single step, 123I-iododestannylation reaction from the corresponding stannane precursor in good AY and MA. 123I-MAPi was evaluated in vitro in a small cell lung cancer model with high PARP expression, rapid internalization and high nuclear uptake shown.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Medicina de Precisión , Electrones
3.
Neurooncol Adv ; 4(1): vdac135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36128586

RESUMEN

Background: Single-domain antibody fragments (aka VHH, ~ 13 kDa) are promising delivery systems for brain tumor theranostics; however, achieving efficient delivery of VHH to intracranial lesions remains challenging due to the tumor-brain barrier. Here, we evaluate low-dose whole-brain irradiation as a strategy to increase the delivery of an anti- human epidermal growth factor receptor type 2 (HER2) VHH to breast cancer-derived intracranial tumors in mice. Methods: Mice with intracranial HER2-positive BT474BrM3 tumors received 10-Gy fractionated cranial irradiation and were evaluated by noninvasive imaging. Anti-HER2 VHH 5F7 was labeled with 18F, administered intravenously to irradiated mice and controls, and PET/CT imaging was conducted periodically after irradiation. Tumor uptake of 18F-labeled 5F7 in irradiated and control mice was compared by PET/CT image analysis and correlated with tumor volumes. In addition, longitudinal dynamic contrast-enhanced MRI (DCE-MRI) was conducted to visualize and quantify the potential effects of radiation on tumor perfusion and permeability. Results: Increased 18F-labeled 5F7 intracranial tumor uptake was observed with PET in mice receiving cranial irradiation, with maximum tumor accumulation seen approximately 12 days post initial radiation treatment. No radiation-induced changes in HER2 expression were detected by Western blot, flow cytometry, or on tissue sections. DCE-MRI imaging demonstrated transiently increased tumor perfusion and permeability after irradiation, consistent with the higher tumor uptake of 18F-labeled anti-HER2 5F7 in irradiated mice. Conclusion: Low-level brain irradiation induces dynamic changes in tumor vasculature that increase the intracranial tumor delivery of an anti-HER2 VHH, which could facilitate the use of radiolabeled VHH to detect, monitor, and treat HER2-expressing brain metastases.

4.
Sci Rep ; 12(1): 3020, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194100

RESUMEN

Radiopharmaceutical therapy (RPT) is an attractive strategy for treatment of disseminated cancers including those overexpressing the HER2 receptor including breast, ovarian and gastroesophageal carcinomas. Single-domain antibody fragments (sdAbs) exemplified by the HER2-targeted VHH_1028 evaluated herein are attractive for RPT because they rapidly accumulate in tumor and clear faster from normal tissues than intact antibodies. In this study, VHH_1028 was labeled using the residualizing prosthetic agent N-succinimidyl 3-guanidinomethyl 5-[131I]iodobenzoate (iso-[131I]SGMIB) and its tissue distribution evaluated in the HER2-expressing SKOV-3 ovarian and BT474 breast carcinoma xenograft models. In head-to-head comparisons to [131I]SGMIB-2Rs15d, a HER2-targeted radiopharmaceutical currently under clinical investigation, iso-[131I]SGMIB-VHH_1028 exhibited significantly higher tumor uptake and significantly lower kidney accumulation. The results demonstrated 2.9 and 6.3 times more favorable tumor-to-kidney radiation dose ratios in the SKOV-3 and BT474 xenograft models, respectively. Iso-[131I]SGMIB-VHH_1028 was prepared using a solid-phase extraction method for purification of the prosthetic agent intermediate Boc2-iso-[131I]SGMIB that reproducibly scaled to therapeutic-level doses and obviated the need for its HPLC purification. Single-dose (SKOV-3) and multiple-dose (BT474) treatment regimens demonstrated that iso-[131I]SGMIB-VHH_1028 was well tolerated and provided significant tumor growth delay and survival prolongation. This study suggests that iso-[131I]SGMIB-VHH_1028 is a promising candidate for RPT of HER2-expressing cancers and further development is warranted.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Expresión Génica/genética , Fragmentos de Inmunoglobulinas/uso terapéutico , Radioisótopos de Yodo/farmacología , Radioisótopos de Yodo/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Radiofármacos/farmacología , Radiofármacos/uso terapéutico , Receptor ErbB-2/genética , Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Receptor ErbB-2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Front Pharmacol ; 11: 170, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194409

RESUMEN

Poly(ADP-ribose)polymerase-1 (PARP1) is a DNA repair enzyme highly expressed in the nuclei of mammalian cells, with a structure and function that have attracted interest since its discovery. PARP inhibitors, moreover, can be used to induce synthetic lethality in cells where the homologous recombination (HR) pathway is deficient. Several small molecule PARP inhibitors have been approved by the FDA for multiple cancers bearing this deficiency These PARP inhibitors also act as radiosensitizing agents by delaying single strand break (SSB) repair and causing subsequent double strand break (DSB) generation, a concept that has been leveraged in various preclinical models of combination therapy with PARP inhibitors and ionizing radiation. Researchers have determined the efficacy of various PARP inhibitors at sub-cytotoxic concentrations in radiosensitizing multiple human cancer cell lines to ionizing radiation. Furthermore, several groups have begun evaluating combination therapy strategies in mouse models of cancer, and a fluorescent imaging agent that allows for subcellular imaging in real time has been developed from a PARP inhibitor scaffold. Other PARP inhibitor scaffolds have been radiolabeled to create PET imaging agents, some of which have also entered clinical trials. Most recently, these highly targeted small molecules have been radiolabeled with therapeutic isotopes to create radiotherapeutics and radiotheranostics in cancers whose primary interventions are surgical resection and whole-body radiotherapy. In this review we discuss the utilization of these small molecules in combination therapies and in scaffolds for imaging agents, radiotherapeutics, and radiotheranostics. Development of these radiolabeled PARP inhibitors has presented promising results for new interventions in the fight against some of the most intractable cancers.

6.
Clin Cancer Res ; 26(12): 2871-2881, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32066626

RESUMEN

PURPOSE: Glioblastoma multiforme is a highly aggressive form of brain cancer whose location, tendency to infiltrate healthy surrounding tissue, and heterogeneity significantly limit survival, with scant progress having been made in recent decades. EXPERIMENTAL DESIGN: 123I-MAPi (Iodine-123 Meitner-Auger PARP1 inhibitor) is a precise therapeutic tool composed of a PARP1 inhibitor radiolabeled with an Auger- and gamma-emitting iodine isotope. Here, the PARP inhibitor, which binds to the DNA repair enzyme PARP1, specifically targets cancer cells, sparing healthy tissue, and carries a radioactive payload within reach of the cancer cells' DNA. RESULTS: The high relative biological efficacy of Auger electrons within their short range of action is leveraged to inflict DNA damage and cell death with high precision. The gamma ray emission of 123I-MAPi allows for the imaging of tumor progression and therapy response, and for patient dosimetry calculation. Here we demonstrated the efficacy and specificity of this small-molecule radiotheranostic in a complex preclinical model. In vitro and in vivo studies demonstrate high tumor uptake and a prolonged survival in mice treated with 123I-MAPi when compared with vehicle controls. Different methods of drug delivery were investigated to develop this technology for clinical applications, including convection enhanced delivery and intrathecal injection. CONCLUSIONS: Taken together, these results represent the first full characterization of an Auger-emitting PARP inhibitor which demonstrate a survival benefit in mouse models of GBM and confirm the high potential of 123I-MAPi for clinical translation.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Radioisótopos de Yodo/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Radioterapia/métodos , Animales , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Proliferación Celular , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Ratones , Ratones Desnudos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
EJNMMI Res ; 8(1): 59, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29974335

RESUMEN

BACKGROUND: Radiation injury can be indistinguishable from recurrent tumor on standard imaging. Current protocols for this differential diagnosis require one or more follow-up imaging studies, long dynamic acquisitions, or complex image post-processing; despite much research, the inability to confidently distinguish between these two entities continues to pose a significant dilemma for the treating clinician. Using mouse models of both glioblastoma and radiation necrosis, we tested the potential of poly(ADP-ribose) polymerase (PARP)-targeted PET imaging with [18F]PARPi to better discriminate radiation injury from tumor. RESULTS: In mice with experimental radiation necrosis, lesion uptake on [18F]PARPi-PET was similar to contralateral uptake (1.02 ± 0.26 lesion/contralateral %IA/ccmax ratio), while [18F]FET-PET clearly delineated the contrast-enhancing region on MR (2.12 ± 0.16 lesion/contralateral %IA/ccmax ratio). In mice with focal intracranial U251 xenografts, tumor visualization on PARPi-PET was superior to FET-PET, and lesion-to-contralateral activity ratios (max/max, p = 0.034) were higher on PARPi-PET than on FET-PET. CONCLUSIONS: A murine model of radiation necrosis does not demonstrate [18F]PARPi avidity, and [18F]PARPi-PET is better than [18F]FET-PET in distinguishing radiation injury from brain tumor. [18F]PARPi-PET can be used for discrimination between recurrent tumor and radiation injury within a single, static imaging session, which may be of value to resolve a common dilemma in neuro-oncology.

8.
J Nucl Med ; 59(8): 1225-1233, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29572254

RESUMEN

The DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is overexpressed in glioblastoma, with overall low expression in healthy brain tissue. Paired with the availability of specific small molecule inhibitors, PARP-1 is a near-ideal target to develop novel radiotherapeutics to induce DNA damage and apoptosis in cancer cells, while sparing healthy brain tissue. Methods: We synthesized an 131I-labeled PARP-1 therapeutic and investigated its pharmacology in vitro and in vivo. A subcutaneous tumor model was used to quantify retention times and therapeutic efficacy. A potential clinical scenario, intratumoral convection-enhanced delivery, was mimicked using an orthotopic glioblastoma model combined with an implanted osmotic pump system to study local administration of 131I-PARPi (PARPi is PARP inhibitor). Results:131I-PARPi is a 1(2H)-phthalazinone, similar in structure to the Food and Drug Administration-approved PARP inhibitor AZD-2281. In vitro studies have shown that 131I-PARPi and AZD-2281 share similar pharmacologic profiles. 131I-PARPi delivered 134.1 cGy/MBq intratumoral injected activity. Doses to nontarget tissues, including liver and kidney, were significantly lower. Radiation damage and cell death in treated tumors were shown by p53 activation in U87-MG cells transfected with a p53-bioluminescent reporter. Treated mice showed significantly longer survival than mice receiving vehicle (29 vs. 22 d, P < 0.005) in a subcutaneous model. Convection-enhanced delivery demonstrated efficient retention of 131I-PARPi in orthotopic brain tumors, while quickly clearing from healthy brain tissue. Conclusion: Our results demonstrate 131I-PARPi's high potential as a therapeutic and highlight PARP's relevance as a target for radionuclide therapy. Radiation plays an integral role in brain tumor therapy, and radiolabeled PARP therapeutics could ultimately lead to improvements in the standard of care.


Asunto(s)
Glioblastoma/radioterapia , Terapia Molecular Dirigida , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/metabolismo , Glioblastoma/patología , Ratones , Radiometría , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Proteína p53 Supresora de Tumor/metabolismo
9.
Toxins (Basel) ; 8(4): 117, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27104567

RESUMEN

Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.


Asunto(s)
Venenos de Moluscos , Péptidos , Animales , Descubrimiento de Drogas , Estructura Molecular , Moluscos/genética , Venenos de Moluscos/química , Venenos de Moluscos/genética , Venenos de Moluscos/uso terapéutico , Venenos de Moluscos/toxicidad , Péptidos/química , Péptidos/genética , Péptidos/uso terapéutico , Péptidos/toxicidad , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA