Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514331

RESUMEN

This study was carried out to evaluate the effect of exogenous proline on the growth, biochemical responses, and plant recovery of drought-stressed oilseed rape plants after renewed irrigation. The experiment was conducted under controlled laboratory conditions. After 21 days of cultivation, 3-4 leaf stage seedlings were sprayed with proline (1 mM), then subjected to prolonged drought stress for 8 days to achieve a severe water deficit, next, irrigation was resumed and recovery was assessed after 4 days. The results show that exogenous application of proline reduced the drought-induced growth inhibition of seedlings while maintaining relative water content (RWC) and growth parameters closer to those of irrigated plants. Proline had a positive effect on chlorophyll accumulation and membrane permeability while decreasing ethylene, H2O2, and MDA levels. Moreover, after 4 days of recovery, the H2O2 content of the proline-treated plants was significantly lower (2-fold) and the MDA content was close to that of continuously irrigated plants. Thus, all these biochemical reactions influenced plant survival: after drought + proline treatment, the number of surviving plants was two times higher than that of drought-treated plants. The findings show that exogenous proline has antioxidant, osmotic, and growth-promoting properties that improve the drought tolerance of winter oilseed rape plants and is, therefore, beneficial for drought adaptation in oilseed rape.

2.
Plants (Basel) ; 12(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986989

RESUMEN

In order to increase plants tolerance to drought, the idea of treating them with stress-protecting compounds exogenously is being considered. In this study, we aimed to evaluate and compare the impact of exogenous calcium, proline, and plant probiotics on the response of winter wheat to drought stress. The research was carried out under controlled conditions, simulating a prolonged drought from 6 to 18 days. Seedlings were treated with ProbioHumus 2 µL g-1 for seed priming, 1 mL 100 mL-1 for seedling spraying, and proline 1 mM according to the scheme. 70 g m-2 CaCO3 was added to the soil. All tested compounds improved the prolonged drought tolerance of winter wheat. ProbioHumus, ProbioHumus + Ca had the greatest effect on maintaining the relative leaf water content (RWC) and in maintaining growth parameters close to those of irrigated plants. They delayed and reduced the stimulation of ethylene emission in drought-stressed leaves. Seedlings treated with ProbioHumus and ProbioHumus + Ca had a significantly lower degree of membrane damage induced by ROS. Molecular studies of drought-responsive genes revealed substantially lower expression of Ca and Probiotics + Ca treated plants vs. drought control. The results of this study showed that the use of probiotics in combination with Ca can activate defense reactions that can compensate for the adverse effects of drought stress.

3.
Plants (Basel) ; 11(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501291

RESUMEN

The physiological responses of wheat and maize seedlings to exogenous auxin-type compounds 1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt (TA-12) and 1-[2-dimethylaminoethoxicarbonylmethyl]naphthalene chlormethylate (TA-14) application prior to polyethyleneglycol-6000 (PEG) treatment were studied. PEG treatment inhibited seedlings growth and caused alterations in their antioxidant defence which was crop-specific. PEG increased the non-enzymatic antioxidants along with inhibition of enzymatic antioxidant activity in wheat, while in maize the opposite effects were found. The TA-12 and TA-14 applied alone increased most of the growth parameters measured in both crops, as well as the catalase activity and protein content of wheat. The growth of PEG-treated wheat and maize plants was improved by foliar spray with TA-compounds (TAs). Application of TAs before PEG treatment maintained low-molecular weight thiol-containing compounds and protein contents, and catalase and peroxidase activities close to the control levels. This was better expressed in maize than in wheat seedlings. The results showed that the preliminary application of TA-12 and TA-14 can reduce the adverse effects of moderate water deficit by crop-specific adjustment of the antioxidant defence to counteract stress.

4.
Life (Basel) ; 12(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36013462

RESUMEN

Cold is a major environmental key factor influencing plant growth, development, and productivity. Responses and adaption processes depend on plant physiological and biochemical modifications, first of all via the hormonal system. Indole-3-acetic acid (IAA) plays a critical role in the processes of plant functioning. To assess the influence of the auxin-like compounds 1-[2-chloroethoxycarbonylmethyl]-4-naphthalenesulfonic acid calcium salt (TA-12) and 1-[2-dimethylaminoethoxycarbonylmethyl]naphthalene chloromethylate (TA-14) in the process of cold acclimation, long-term field trials over four years were performed with two rapeseed (Brassica napus L.) plant cultivars with different wintering resistance in temperate-zone countries. In these two rapeseed cultivars, namely 'Casino' (less resistant) and 'Valesca' (more resistant), investigations were conducted in the terminal buds and root collars. The application of auxin-like compounds revealed a close interlinkage between the composition of dehydrins and the participation of the phytohormone IAA in the adaptation processes. By applying TA-12 and TA-14, the importance of the proteins, especially the composition of the dehydrins, the IAA amount, and the status of the oilseed rape cultivars at the end of the cold acclimation period were confirmed. Following on from this, when introducing oilseed rape cultivars from foreign countries, it may also be of value to assess their suitability for cultivation in temperate-zone countries.

5.
Plants (Basel) ; 10(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072415

RESUMEN

This study aimed to investigate the impact of climate warming on hormonal traits of invasive and non-invasive plants at the early developmental stage. Two different lupine species-invasive Lupinus polyphyllus Lindl. and non-invasive Lupinus luteus L.-were used in this study. Plants were grown in climate chambers under optimal (25 °C) and simulated climate warming conditions (30 °C). The content of phytohormone indole-3-acetic acid (IAA), ethylene production and the adaptive growth of both species were studied in four-day-old seedlings. A higher content of total IAA, especially of IAA-amides and transportable IAA, as well as higher ethylene emission, was determined to be characteristic for invasive lupine both under optimal and simulated warming conditions. It should be noted that IAA-L-alanine was detected entirely in the invasive plants under both growth temperatures. Further, the ethylene emission values increased significantly in invasive lupine hypocotyls under 30 °C. Invasive plants showed plasticity in their response by reducing growth in a timely manner and adapting to the rise in temperature. Based on the data of the current study, it can be suggested that the invasiveness of both species may be altered under climate warming conditions.

6.
Plants (Basel) ; 9(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024174

RESUMEN

Cold stress is one of the most common abiotic stresses experienced by plants and is caused by low temperature extremes and variations. Polyamines (PAs) have been reported to contribute in abiotic stress defense processes in plants. The present study investigates the survival and responses of PA-treated non-acclimated (N) and acclimated (A) winter oilseed rape to increasing cold conditions. The study was conducted under controlled conditions. Seedlings were foliarly sprayed with spermidine (Spd), spermine (Spm), and putrescine (Put) solutions (1 mM) and exposed to four days of cold acclimation (4 °C) and two days of increasing cold (from -1 to -3 °C). Two cultivars with different cold tolerance were used in this study. The recorded traits included the percentage of survival, H+-ATPase activity, proline accumulation, and ethylene emission. Exogenous PA application improved cold resistance, maintained the activity of plasma membrane H+-ATPase, increased content of free proline, and delayed stimulation of ethylene emission under increasing cold. The results of the current study on winter oilseed rape revealed that foliar application of PAs may activate a defensive response (act as elicitor to trigger physiological processes), which may compensate the negative impact of cold stress. Thus, cold tolerance of winter oilseed rape can be enhanced by PA treatment.

7.
J Plant Res ; 132(6): 789-811, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31628563

RESUMEN

The study aimed to assess response of juvenile progeny of seven forest tree species, Pinus sylvestris, Picea abies, Betula pendula, Alnus glutinosa, Populus tremula, Quercus robur and Fraxinus excelsior, and their populations to different combinations of climate change-related multiple stressors, simulated in a phytotron under elevated CO2 concentration: (1) heat + elevated humidity (HW); (2) heat + frost + drought (HFD); (3) heat + elevated humidity + increased UV-B radiation doses + elevated ozone concentration (HWUO); and (4) heat + frost + drought + increased UV-B radiation doses + elevated ozone concentration (HFDUO). Effects of the complex treatments, species and species-by-treatment interaction were highly significant in most of the growth, physiological and biochemical traits studied, indicating general and species-specific responses to the applied treatments. For deciduous trees, height increment was much higher under HW treatment than in ambient conditions (control) indicating a positive effect of elevated temperature and better water and CO2 availability. HFD treatment caused reduction of height increment in comparison to HW treatment in most species except for Q. robur and F. excelsior which benefited from lower humidity. Treatments HWUO and HFDUO have caused substantial damages to leaves in fast growing deciduous P. tremula, A. glutinosa and B. pendula, and resulted in their lower height increment than in HW treatment, although it was the same or even higher than that in the control. Rates of photosynthesis in most of the tree species were greatest in HFD treatment. A lower photosynthetic rate (compared to control) was observed in B. pendula, P. tremula and F. excelsior in HW treatment, and in most species-in HWUO treatment. Compared to control, intrinsic water use efficiency in all treatments was significantly lower in P. tremula, A. glutinosa and F. excelsior and higher in conifers P. sylvestris and P. abies. Significant population-by-treatment interactions found for most traits showed variation in response of populations, implying that this reflects adaptive potential of each tree species. The observed responses may not always be considered as adaptive as deteriorating growth of some populations or species may lead to loss of their competitiveness thus compromising regeneration and natural successions.


Asunto(s)
Cambio Climático , Sequías , Calor/efectos adversos , Ozono/efectos adversos , Árboles/fisiología , Rayos Ultravioleta , Tiempo (Meteorología) , Dióxido de Carbono/análisis , Especificidad de la Especie
8.
Acta Biochim Pol ; 60(4): 767-72, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24432329

RESUMEN

The interest in phenols and anthocyanins has increased due to their antioxidant properties and to their potential usage as dietary antioxidants in human nutrition. Total phenols and anthocyanin content, composition and stability in berry extracts of blackcurrant interspecific hybrids, and antioxidative activity of extracts was evaluated. Berries of interspecific hybrids accumulated 530 to 614 mg 100 g(-1) FW of total phenolic compounds, while 621 mg 100 g(-1) FW of phenolics was established in berries of control Ribes nigrum cultivar 'Ben Tirran'. 'Ben Tirran' berries accumulated 444 mg 100 g(-1) FW of anthocyanins and higher amount was identified in berries of interspecific hybrids No. 11-13 (R. nigrum × R. petraeum) and No. 57 (R. nigrum × R. aureum), 522 and 498 mg100 g(-1) FW respectively. Berry extracts of hybrid No. 11-13 distinguished by the highest antioxidative activity (80%) and it was higher than antioxidant activity of 'Ben Tirran' (70%). Antioxidative activity of all tested berry extracts (70-80%) was twice higher compared to synthetic antioxidant BHT (39%). However correlation between phenolics or total anthocyanin content and antioxidative activity degree was not established. Amount of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside in berries of hybrids No. 57, No. 11-13 and No. 8 ((R. nigrum × R. americanum) × (R. nigrum × R. americanum)) was higher than in berries of 'Ben Tirran'. It was established that cyanidins are more stable anthocyanins in all studied temperature and irradiation conditions. Therefore interspecific hybrids No. 57 and No. 11-13 were the most agronomically valuable hybrids.


Asunto(s)
Antocianinas/química , Antioxidantes/química , Fenoles/química , Ribes/química , Antocianinas/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Humanos , Hibridación Genética , Fenoles/aislamiento & purificación , Ribes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA