Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063870

RESUMEN

The high-temperature oxidation behaviour and phase stability of equi-atomic high entropy AlCrCoFeNi alloy (HEA) were studied using in situ high-temperature X-ray diffraction (HTXRD) combined with ThermoCalc thermodynamic calculation. HTXRD analyses reveal the formation of B2, BCC, Sigma and FCC, phases at different temperatures, with significant phase transitions observed at intermediate temperatures from 600 °C-100 °C. ThermoCalc predicted phase diagram closely matched with in situ HTXRD findings highlighting minor differences in phase transformation temperature. ThermoCalc predictions of oxides provide insights into the formation of stable oxide phases, predominantly spinel-type oxides, at high p(O2), while a lower volume of halite was predicted, and minor increase observed with increasing temperature. The oxidation behaviour was strongly dependent on the environment, with the vacuum condition favouring the formation of a thin, Al2O3 protective layer, while in atmospheric conditions a thick, double-layered oxide scale of Al2O3 and Cr2O3 formed. The formation of oxide scale was determined by selective oxidation of Al and Cr, as further confirmed by EDX analysis. The formation of thick oxide in air environment resulted in a thick layer of Al-depleted FFC phase. This comprehensive study explains the high-temperature phase stability and time-temperature-dependent oxidation mechanisms of AlCrCoFeNi HEA. The interplay between surface phase transformation beneath oxide scale and oxides is also detailed herein, contributing to further development and optimisation of HEA for high temperature applications.

2.
Materials (Basel) ; 16(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37512315

RESUMEN

This paper utilizes in situ X-ray diffraction (XRD) to investigate the high-temperature oxidation behaviour of CrMnFeCoNi high-entropy alloy (HEA). We found that (1) Mn is the major oxide-forming element in both vacuum and air environments, leading to the formation of non-protective oxides that deplete the bulk alloy of Mn; (2) no oxides like Cr2O3, Fe2O3, or Fe3O4 were observed during the high-temperature oxidation behaviour of CrMnFeCoNi, which contradicts some previous studies on the isothermal oxidation of CrMnFeCoNi HEA. We also analysed and compared the experimental results with thermodynamic calculations by using ThermoCalc version 2022b software following the CALPHAD method. ThermoCalc predicted spinel oxide in a vacuum environment, along with halite oxides observed in experimental results; also, in an atmospheric environment, it predicted only spinel, indicating the need for further investigation into factors to validate the thermodynamic predictions. Our study shows that the in situ HTXRD technique is a powerful tool to accurately identify time-temperature-dependent phase formation/transformation for studying oxidation behaviours and understanding oxidation mechanisms in HEAs.

3.
Sci Rep ; 8(1): 9065, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899535

RESUMEN

High Al Low-density steels could have a transformative effect on the light-weighting of steel structures for transportation. They can achieve the desired properties with the minimum amount of Ni, and thus are of great interest from an economic perspective. In this study, the mechanical properties of two duplex low-density steels, Fe-15Mn-10Al-0.8C-5Ni and Fe-15Mn-10Al-0.8 C (wt.%) were investigated through nano-indentation and simulation through utilization of ab-initio formalisms in Density Functional Theory (DFT) in order to establish the hardness resulting from two critical structural features (κ-carbides and B2 intermetallic) as a function of annealing temperature (500-1050 °C) and the addition of Ni. In the Ni-free sample, the calculated elastic properties of κ-carbides were compared with those of the B2 intermetallic Fe3Al-L12 and the role of Mn in the κ structure and its elastic properties were studied. The Ni-containing samples were found to have a higher hardness due to the B2 phase composition being NiAl rather than FeAl, with Ni-Al bonds reported to be stronger than the Fe-Al bonds. In both samples, at temperatures of 900 °C and above, the ferrite phase contained nano-sized discs of B2 phase, wherein the Ni-containing samples exhibited higher hardness, attributed again to the stronger Ni-Al bonds in the B2 phase. At 700 °C and below, the nano-sized B2 discs were replaced by micrometre sized needles of κ in the Ni-free sample resulting in a lowering of the hardness. In the Ni-containing sample, the entire α phase was replaced by B2 stringers, which had a lower hardness than the Ni-Al nano-discs due to a lower Ni content in B2 stringer bands formed at 700 °C and below. In addition, the hardness of needle-like κ-carbides formed in α phase was found to be a function of Mn content. Although it was impossible to measure the hardness of cuboid κ particles in γ phase because of their nano-size, the hardness value of composite phases, e.g. γ + κ was measured and reported. All the hardness values were compared and rationalized by bonding energy between different atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA