Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 84: 32-40, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30481644

RESUMEN

Hydroxynitrile lyase (HNL) catalyzed enantioselective CC bond formation is an efficient approach to synthesize chiral cyanohydrins which are important building blocks in the synthesis of a number of fine chemicals, agrochemicals and pharmaceuticals. Immobilization of HNL is known to provide robustness, reusability and in some cases also enhances activity and selectivity. We optimized the preparation of immobilization of Baliospermium montanum HNL (BmHNL) by cross linking enzyme aggregate (CLEA) method and characterized it by SEM. Optimization of biocatalytic parameters was performed to obtain highest % conversion and ee of (S)-mandelonitrile from benzaldehyde using CLEA-BmHNL. The optimized reaction parameters were: 20 min of reaction time, 7 U of CLEA-BmHNL, 1.2 mM substrate, and 300 mM citrate buffer pH 4.2, that synthesized (S)-mandelonitrile in ∼99% ee and ∼60% conversion. Addition of organic solvent in CLEA-BmHNL biocatalysis did not improve in % ee or conversion of product unlike other CLEA-HNLs. CLEA-BmHNL could be successfully reused for eight consecutive cycles without loss of conversion or product formation and five cycles with a little loss in enantioselectivity. Eleven different chiral cyanohydrins were synthesized under optimal biocatalytic conditions in up to 99% ee and 59% conversion, however the % conversion and ee varied for different products. CLEA-BmHNL has improved the enantioselectivity of (S)-mandelonitrile synthesis compared to the use of purified BmHNL. Nine aldehydes not tested earlier with BmHNL were converted into their corresponding (S)-cyanohydrins for the first time using CLEA-BmHNL. Among the eleven (S)-cyanohydrins syntheses reported here, eight of them have not been synthesized by any CLEA-HNL. Overall, this study showed preparation, characterization of a stable, robust and recyclable biocatalyst i.e. CLEA-BmHNL and its biocatalytic application in the synthesis of different (S)-aromatic cyanohydrins.


Asunto(s)
Aldehído-Liasas/metabolismo , Enzimas Inmovilizadas/metabolismo , Euphorbiaceae/enzimología , Nitrilos/metabolismo , Aldehído-Liasas/química , Biocatálisis , Enzimas Inmovilizadas/química , Estructura Molecular , Nitrilos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA