Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 12(11)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167422

RESUMEN

Photostability of small-molecule (SM)-based organic photovoltaics (SM-OPVs) is greatly improved by utilizing a ternary photo-active layer incorporating a small amount of a conjugated polymer (CP). Semi-crystalline poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) and amorphous poly[(2,5-bis(2-decyltetradecyloxy)phenylene)-alt-(5,6-dicyano-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2CNBT) with similar chemical structures were used for preparing SM:fullerene:CP ternary photo-active layers. The power conversion efficiency (PCE) of the ternary device with PPDT2FBT (Ternary-F) was higher than those of the ternary device with PPDT2CNBT (Ternary-CN) and a binary SM-OPV device (Binary) by 15% and 17%, respectively. The photostability of the SM-OPV was considerably improved by the addition of the crystalline CP, PPDT2FBT. Ternary-F retained 76% of its initial PCE after 1500 h of light soaking, whereas Ternary-CN and Binary retained only 38% and 17% of their initial PCEs, respectively. The electrical and morphological analyses of the SM-OPV devices revealed that the addition of the semi-crystalline CP led to the formation of percolation pathways for charge transport without disturbing the optimized bulk heterojunction morphology. The CP also suppressed trap-assisted recombination and enhanced the hole mobility in Ternary-F. The percolation pathways enabled the hole mobility of Ternary-F to remain constant during the light-soaking test. The photostability of Ternary-CN did not improve because the addition of the amorphous CP inhibited the formation of ordered SM domains.

2.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29218755

RESUMEN

The performance of organic photovoltaics (OPVs) based on the small-molecule organic semiconductor p-DTS(FBTTh2 )2 is greatly improved by the addition of a conjugated block copolymer composed of difluoroquinoxaline and thienopyrrolodione blocks (D130). The power conversion efficiency (PCE) of the p-DTS(FBTTh2 )2 -based OPV is improved from 5.08% to 6.75% by the addition of 5 wt% D130 to the photoactive layer, which is composed of p-DTS(FBTTh2 )2 and a fullerene derivative. Current-voltage and grazing incidence wide-angle X-ray scattering analyses revealed that the addition of D130 significantly reduces the trap density of the device and changes the packing orientation of p-DTS(FBTTh2 )2 from mostly edge-on to partially face-on. These changes greatly improve the charge carrier mobility of the OPV, indicating that D130 is highly compatible with p-DTS(FBTTh2 )2 . Furthermore, the addition of D130 improve the photostability of the OPV by reducing the burn-in loss under a light soaking intensity of 1 sun. The D130-based OPV maintained 34% of its initial PCE after a light soaking test for 858 h. In contrast, the PCE of the OPV without D130 reduced to 14% of its initial efficiency in the same time period.


Asunto(s)
Suministros de Energía Eléctrica , Compuestos Orgánicos/química , Polímeros/química , Semiconductores , Algoritmos , Luz , Estructura Molecular , Energía Solar
3.
Nano Lett ; 14(5): 2305-9, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24758307

RESUMEN

Understanding the influence of different film structures on electron diffusion in nanoporous metal oxide films has been challenging. Because of the rate-limiting role that traps play in controlling the transport properties, the structural effects of different film architectures are largely obscured or reduced. We describe a general approach to probe the impact of structural order and disorder on the charge-carrier dynamics without the interference of transport-limiting traps. As an illustration of this approach, we explore the consequences of trap-free diffusion in vertically aligned nanotube structures and random nanoparticle networks in sensitized titanium dioxide solar cells. Values of the electron diffusion coefficients in the nanotubes approached those observed for the single crystal and were up to 2 orders of magnitude greater than those measured for nanoparticle films with various average crystallites sizes. Transport measurements together with modeling show that electron scattering at grain boundaries in particle networks limits trap-free diffusion. In presence of traps, transport was 10(3)-10(5) times slower in nanoparticle films than in the single crystal. Understanding the link between structure and carrier dynamics is important for systematically altering and eventually controlling the electronic properties of nanoscaled materials.

4.
ACS Nano ; 5(10): 8267-74, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21932767

RESUMEN

Sensitization of solid-state dye-sensitized solar cells (SSDSSCs) with a new, organic donor-π-acceptor dye with a large molar absorption coefficient led to an open-circuit voltage of over 1 V at AM1.5 solar irradiance (100 mW/cm(2)). Recombination of electrons in the TiO(2) film with the oxidized species in the hole-transfer material (HTM) was significantly slower with the organic dye than with a standard ruthenium complex dye. Density functional theory indicated that steric shielding of the electrons in the TiO(2) by the organic dye was important in reducing recombination. Preventing the loss of photoelectrons resulted in a significant voltage gain. There was no evidence that the organic dye contributed to the high voltage by shifting the band edges to more negative electrode potentials. Compared with an iodide-based liquid electrolyte, however, the more positive redox potential of the solid-state HTM used in the SSDSSCs favored higher voltages.

5.
Langmuir ; 24(10): 5636-40, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18435553

RESUMEN

The effect of chenodeoxycholic acid as a coadsorbent on TiO 2 nanocrystalline solar cells incorporating phthalocyanine sensitizers was studied under various conditions. Adding chenodeoxycholic acid onto TiO 2 nanoparticles not only reduces the adsorption of phthalocyanine sensitizers but also prevents sensitizer aggregation, leading to different photovoltaic performance. The inspection of IPCE and absorption spectra showed that the load of phthalocyanine sensitizers is strongly dependent on the molar concentration of chenodeoxycholic acid coadsorbent. The open circuit voltage of the solar cells with chenodeoxycholic acid coadsorbent increases due to the enhanced electron lifetime in TiO 2 nanoparticles coupled with the band edge shift of TiO 2 to negative potentials.

6.
Chem Commun (Camb) ; (44): 4680-2, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17989831

RESUMEN

Dye-sensitized solar cells based on co-sensitization of organic dyes having complementary spectral absorption in the visible region resulted in a panchromatic response, which exhibited 86% incident monochromatic photon-to-current conversion efficiency in the visible region; the optimized cell gave a short circuit current density of 15.5 mA cm(-2), an open circuit voltage of 685 mV and a fill factor of 0.70 corresponding to an overall conversion efficiency of 7.43% under solar simulated light irradiation of 100 mW cm(-2).


Asunto(s)
Colorantes Fluorescentes/química , Membranas Artificiales , Nanoestructuras/química , Titanio/química , Electrodos , Estructura Molecular , Sensibilidad y Especificidad
8.
Chem Commun (Camb) ; (1): 103-5, 2006 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-16353107

RESUMEN

Linking of N3 dye to another TiO2-attached N3 dye rendered an enhanced short-circuit photocurrent and thereby higher efficiency for the dye-sensitized solar cell with the pertinent TiO2 film electrode.

9.
Langmuir ; 20(22): 9807-10, 2004 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-15491218

RESUMEN

Effects of incorporation of acid-treated single-wall carbon nanotubes (a-SWCNs) in TiO(2) film and of anchorage of dye-linked, a-SWCNs (hereafter dye-SWCNs) to the TiO(2)/electrolyte interface on photocurrent-voltage characteristics of dye-sensitized solar cells were studied. Compared with an unmodified cell, the modified cell with the a-SWCNs in TiO(2) film showed a 25% increase in short-circuit photocurrent (J(sc)). The J(sc) increase is correlated with improved connectivity between the a-SWCNs and the TiO(2) particles and with enhanced light scattering by TiO(2) clusters formed in the presence of the a-SWCNs. In the case of anchoring dye-SWCNs to the TiO(2)/electrolyte interface, the open-circuit voltage (V(oc)) increased by as much as 0.1 V, possibly due to the basicity of the TiO(2) surface from NH groups of ethylenediamine moieties of the anchored dye-SWCNs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA