Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
PLoS One ; 17(9): e0274879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36174000

RESUMEN

Uterine fibroid is one of the most prevalent benign tumors in women, with high socioeconomic costs. Although genome-wide association studies (GWAS) have identified several loci associated with uterine fibroid risks, they could not successfully interpret the biological effects of genomic variants at the gene expression levels. To prioritize uterine fibroid susceptibility genes that are biologically interpretable, we conducted a transcriptome-wide association study (TWAS) by integrating GWAS data of uterine fibroid and expression quantitative loci data. We identified nine significant TWAS genes including two novel genes, RP11-282O18.3 and KBTBD7, which may be causal genes for uterine fibroid. We conducted functional enrichment network analyses using the TWAS results to investigate the biological pathways in which the overall TWAS genes were involved. The results demonstrated the immune system process to be a key pathway in uterine fibroid pathogenesis. Finally, we carried out chemical-gene interaction analyses using the TWAS results and the comparative toxicogenomics database to determine the potential risk chemicals for uterine fibroid. We identified five toxic chemicals that were significantly associated with uterine fibroid TWAS genes, suggesting that they may be implicated in the pathogenesis of uterine fibroid. In this study, we performed an integrative analysis covering the broad application of bioinformatics approaches. Our study may provide a deeper understanding of uterine fibroid etiologies and informative notifications about potential risk chemicals for uterine fibroid.


Asunto(s)
Leiomioma , Transcriptoma , Femenino , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Leiomioma/genética , Toxicogenética
2.
BMC Bioinformatics ; 23(1): 155, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501677

RESUMEN

BACKGROUND: Recent deep sequencing technologies have proven to be valuable resources to gain insights into the expression profiles of diverse tRNAs. However, despite these technologies, the association of tRNAs with diverse diseases has not been explored in depth because analytical tools are lacking. RESULTS: We developed a user-friendly tool, tRNA Expression Analysis Software Utilizing R for Easy use (tReasure), to analyze differentially expressed tRNAs (DEtRNAs) from deep sequencing data of small RNAs using R packages. tReasure can quantify individual mature tRNAs, isodecoders, and isoacceptors. By adopting stringent mapping strategies, tReasure supports the precise measurement of mature tRNA read counts. The whole analysis workflow for determining DEtRNAs (uploading FASTQ files, removing adapter sequences and poor-quality reads, mapping and quantifying tRNAs, filtering out low count tRNAs, determining DEtRNAs, and visualizing statistical analysis) can be performed with the tReasure package. CONCLUSIONS: tReasure is an open-source software available for download at https://treasure.pmrc.re.kr and will be indispensable for users who have little experience with command-line software to explore the biological implication of tRNA expression.


Asunto(s)
ARN , Programas Informáticos , Secuencia de Bases , ARN de Transferencia/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA