Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(5): 2352-2362, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38267375

RESUMEN

The exploration of smart sensors is of great significance for the selectivity, sensitivity, and ability to show the low detection limit for the target analyte. Here, we have used the linker H2L (5-((anthracen-9-ylmethyl)amino)isophthalic acid) for the construction of {[Cd(L)(DMF)(H2O)2]·H2O}n (1) which is in order with the chromophore anthracene moiety and the free -NH functionality as a guest interaction site. This framework showed the luminescence recovery "turn-on" detection of the Al3+ ion in an aqueous solution. An exhaustive mechanism study disclosed that the Lewis acid-base-type interaction between the Al3+ ion and the -NH functionality of the linker in the framework revealed that the absorbance caused an enhancement for the "turn-on" sensing event. Besides the "turn-on" sensing event, the "turn-off" sensing phenomenon of 1 is also noticed when it detects the hazardous oxo-anions (MnO4- and CrO42-) with limit of detection values of 17.08 and 19.91 ppb, respectively. The detection of these diverse analytes are very fast (10 s) and they can also be recognized through a colorimetric response. The sensing mechanisms for these analytes are established by photoinduced electron transfer, Forster resonance energy transfer, and inert filter effect along with theoretical investigation. Furthermore, to show the sensing application of 1 in a versatile podium, a MOF gel composite, 1@AA (AA = Agar-Agar), was developed from 1 with AA. Interestingly, 1@AA showed the colorimetric detection of these analytes under UV light. Therefore, sensor 1 behaves as a smart sensory material for the recognition of the above analytes through a simultaneous "turn-on" and "turn-off" effect.

2.
J Org Chem ; 85(17): 11200-11210, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32786632

RESUMEN

Three new dimeric bis-guanidinate zinc(II) alkyl, halide, and hydride complexes [LZnEt]2 (1), [LZnI]2 (2) and [LZnH]2 (3) were prepared. Compound 3 was successfully employed for the hydrosilylation and hydroboration of a vast number of ketones. The catalytic performance of 3 in the hydroboration of acetophenone exhibits a turnover frequency, reaching up to 5800 h-1, outperforming that of reported zinc hydride catalysts. Notably, both intra- and intermolecular chemoselective hydrosilylation and hydroboration reactions have been investigated.

3.
Beilstein J Nanotechnol ; 10: 494-499, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873321

RESUMEN

Exploring the surface self-assembly of small molecules that act as building blocks (tectons) for complex supramolecular structures is crucial for realizing surface-supported functional molecular devices. Here, we report on the synthesis and surface self-assembly of a new pyrazine-derived molecule with pyridine pendants. Ambient scanning tunneling microscopy investigation at the solution-solid interface reveals polymorphic self-assembly of these molecules on a HOPG substrate. Two different molecular packing structures with equal distribution are observed. Detailed analysis of the STM images emphasizes the crucial role of weak intermolecular hydrogen bonding, and molecule-substrate interactions in the formation of the observed polymorphs. Such weak hydrogen bonding interactions are highly desirable for the formation of modular supramolecular architectures since they can provide sufficiently robust molecular structures and also facilitate error correction.

4.
Inorg Chem ; 58(3): 2042-2053, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30633499

RESUMEN

The synthesis and characterization of a new pyrazine-based ditopic organoplatinum(II) complex having a bite angle of 180° is reported. The facile and efficient syntheses are described of three discrete neutral Fe(II)/Pt(II) heterobimetallic SCCs with Pt(II) acceptor clips of different binding angles, 0, 120, and 180°. These new SCCs were characterized by multinuclear NMR and mass spectrometry. Electrochemical response of these ferrocene containing self-assembled ensembles was studied using cyclic voltammetry. The diplatinum acceptor organometallic clips significantly quench the fluorescence of highly emitting carbon quantum dots (CD), while the self-assembled macrocycles tend to nullify the quenching effect of the organometallic clips. Interestingly, the inefficient quenching of CD fluorescence by these SCCs was found to be directly related to the angular disposition of the binding sites in the Pt(II) based organometallic clips.

5.
Front Chem ; 6: 87, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29666793

RESUMEN

A unique irregular hexagon was self-assembled using an organic donor clip (bearing terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this metallamacrocycle which is a unique example of a discrete hexagonal framework self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer cell lines and results were compared with cisplatin. Results confirmed a positive effect of the metallamacrocycle formation on cell growth inhibition.

6.
Inorg Chem ; 57(7): 3615-3625, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-28841011

RESUMEN

Two new irregular hexagons (6 and 7) were synthesized from a pyrazine motif containing an organometallic acceptor clip [bearing platinum(II) centers] and different neutral donor ligands (4,4'-bipyridine or pyrazine) using a coordination-driven self-assembly protocol. The two-dimensional supramolecules were characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Additionally, one of the macrocycles (6) was characterized by single-crystal X-ray analyses. Macrocycles are unique examples of [2 + 2] self-assembled ensembles that are hexagonal but irregular in shape. These hexagon frameworks require the assembly of only four tectons/subunits. The cytotoxicity of platinum(II)-based macrocycles was studied using various cell lines such as A549 (human lung carcinoma), KB (human oral cancer), MCF7 (human breast cancer), and HaCaT (human skin keratinocyte) cell lines, and the results were compared with those of cisplatin. The smaller macrocycle (7) exhibited a higher cytotoxic effect against all cell types, and its sensitivity was found to be comparable with that of cisplatin for A549 and MCF7 cells. Cell cycle analysis and live propidium iodide staining suggest that the macrocycles 6 and 7 induced a loss of membrane integrity that ultimately might lead to necrotic cell death.


Asunto(s)
Complejos de Coordinación/farmacología , Compuestos Macrocíclicos/farmacología , Compuestos Organoplatinos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Cisplatino/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Ligandos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Estructura Molecular , Necrosis/inducido químicamente , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química
7.
Dalton Trans ; 46(6): 1986-1995, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28112300

RESUMEN

The synthesis and characterization of a new pyrazine-based "flexible" and ditopic platinum(ii) organometallic molecule (3) is being reported. Flexibility in this molecule is due to the presence of ether functional groups that bridge the rigid core and periphery. Due to the presence of square planar Pt(ii) centers at the two ends, the molecule's potential to act as an acceptor building block in the construction of metallamacrocycles was tested. Upon reaction of 3 with various dicarboxylates in a 1 : 1 stoichiometric ratio, [2 + 2] self-assembled neutral metallacycles (M1-M3) were obtained in high yields. M1-M3 were characterized using multinuclear NMR, high resolution mass spectrometry and elemental analyses. The shape and dimensions of these supramolecular structures were also confirmed by optimizing the geometry using the density functional theory (DFT) approach. Computational studies suggest that M1-M3 are nanoscalar macrocyles. Furthermore, using isothermal titration calorimetry (ITC), it was shown that 3 can bind with picric acid (PA) to yield a 3·(PA)2 host-guest complex. The magnitude of the binding constant indicates that 3 has significant affinity for PA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA