Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36615938

RESUMEN

A low cost, with high performance, reduced graphene oxide (RGO) Ultra-wide Band (UWB) array sensor is presented to be applied with a technique of confocal radar-based microwave imaging to recognize a tumor in a human brain. RGO is used to form its patches on a Taconic substrate. The sensor functioned in a range of 1.2 to 10.8 GHz under UWB frequency. The sensor demonstrates high gain of 5.2 to 14.5 dB, with the small size of 90 mm × 45 mm2, which can be easily integrated into microwave imaging systems and allow the best functionality. Moreover, the novel UWB RGO array sensor is established as a detector with a phantom of the human head. The layers' structure represents liquid-imitating tissues that consist of skin, fat, skull, and brain. The sensor will scan nine different points to cover the whole one-sided head phantom to obtain equally distributed reflected signals under two different situations, namely the existence and absence of the tumor. In order to accurately detect the tumor by producing sharper and clearer microwave image, the Matrix Laboratory software is used to improve the microwave imaging algorithm (delay and sum) including summing the imaging algorithm and recording the scattering parameters. The existence of a tumor will produce images with an error that is lower than 2 cm.

2.
Polymers (Basel) ; 13(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34641072

RESUMEN

This paper investigates the use of a Magnetite Polydimethylsiloxane (PDMS) Graphene array sensor in ultra-wide band (UWB) spectrum for microwave imaging applications operated within 4.0-8.0 GHz. The proposed array microwave sensor comprises a Graphene array radiating patch, as well as ground and transmission lines with a substrate of Magnetite PDMS-Ferrite, which is fed by 50 Ω coaxial ports. The Magnetite PDMS substrate associated with low permittivity and low loss tangent realized bandwidth enhancement and the high conductivity of graphene, contributing to a high gain of the UWB array antenna. The combination of 30% (ferrite) and 70% (PDMS) as the sensor's substrate resulted in low permittivity as well as a low loss tangent of 2.6 and 0.01, respectively. The sensor radiated within the UWB band frequency of 2.2-11.2 (GHz) with great energy emitted in the range of 3.5-15.7 dB. Maximum energy of 15.7 dB with 90 × 45 (mm) in small size realized the integration of the sensor for a microwave detection system. The material components of sensor could be implemented for solar panel.

3.
Sensors (Basel) ; 21(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925576

RESUMEN

Ganoderma boninense (G. boninense) infection reduces the productivity of oil palms and causes a serious threat to the palm oil industry. This catastrophic disease ultimately destroys the basal tissues of oil palm, causing the eventual death of the palm. Early detection of G. boninense is vital since there is no effective treatment to stop the continuing spread of the disease. This review describes past and future prospects of integrated research of near-infrared spectroscopy (NIRS), machine learning classification for predictive analytics and signal processing towards an early G. boninense detection system. This effort could reduce the cost of plantation management and avoid production losses. Remarkably, (i) spectroscopy techniques are more reliable than other detection techniques such as serological, molecular, biomarker-based sensor and imaging techniques in reactions with organic tissues, (ii) the NIR spectrum is more precise and sensitive to particular diseases, including G. boninense, compared to visible light and (iii) hand-held NIRS for in situ measurement is used to explore the efficacy of an early detection system in real time using ML classifier algorithms and a predictive analytics model. The non-destructive, environmentally friendly (no chemicals involved), mobile and sensitive leads the NIRS with ML and predictive analytics as a significant platform towards early detection of G. boninense in the future.


Asunto(s)
Arecaceae , Ganoderma , Enfermedades de las Plantas , Espectroscopía Infrarroja Corta
4.
Sensors (Basel) ; 20(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32024016

RESUMEN

A printed compact monopole antenna based on a single negative (SNG) metamaterial is proposed for ultra-wideband (UWB) applications. A low-profile, key-shaped structure forms the radiating monopole and is loaded with metamaterial unit cells with negative permittivity and more than 1.5 GHz bandwidth of near-zero refractive index (NZRI) property. The antenna offers a wide bandwidth from 3.08 to 14.1 GHz and an average gain of 4.54 dBi, with a peak gain of 6.12 dBi; this is in contrast to the poor performance when metamaterial is not used. Moreover, the maximum obtained radiation efficiency is 97%. A reasonable agreement between simulation and experiments is realized, demonstrating that the proposed antenna can operate over a wide bandwidth with symmetric split-ring resonator (SSRR) metamaterial structures and compact size of 14.5 × 22 mm2 (0.148 λ0 × 0.226 λ0) with respect to the lowest operating frequency.

5.
Sensors (Basel) ; 20(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947533

RESUMEN

A multiband coplanar waveguide (CPW)-fed antenna loaded with metamaterial unit cell for GSM900, WLAN, LTE-A, and 5G Wi-Fi applications is presented in this paper. The proposed metamaterial structure is a combination of various symmetric split-ring resonators (SSRR) and its characteristics were investigated for two major axes directions at (x and y-axis) wave propagation through the material. For x-axis wave propagation, it indicates a wide range of negative refractive index in the frequency span of 2-8.5 GHz. For y-axis wave propagation, it shows more than 2 GHz bandwidth of near-zero refractive index (NZRI) property. Two categories of the proposed metamaterial plane were applied to enhance the bandwidth and gain. The measured reflection coefficient (S11) demonstrated significant bandwidths increase at the upper bands by 4.92-6.49 GHz and 3.251-4.324 GHz, considered as a rise of 71.4% and 168%, respectively, against the proposed antenna without using metamaterial. Besides being high bandwidth achieving, the proposed antenna radiates bi-directionally with 95% as the maximum radiation efficiency. Moreover, the maximum measured gain reaches 6.74 dBi by a 92.57% improvement compared with the antenna without using metamaterial. The simulation and measurement results of the proposed antenna show good agreement.

6.
Biosens Bioelectron ; 100: 361-373, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28946108

RESUMEN

Early cancer detection and treatment is an emerging and fascinating field of plasmonic nanobiosensor research. It paves to enrich a life without affecting living cells leading to a possible survival of the patient. This review describes a past and future prospect of an integrated research field on nanostructured metamaterials, microwave transmission, surface plasmonic resonance, nanoantennas, and their manifested versatile properties with nano-biosensors towards early cancer detection to preserve human health. Interestingly, (i) microwave transmission shows more advantages than other electromagnetic radiation in reacting with biological tissues, (ii) nanostructured metamaterial (Au) with special properties like size and shape can stimulate plasmonic effects, (iii) plasmonic based nanobiosensors are to explore the efficacy for early cancer tumour detection or single molecular detection and (iv) nanoantenna wireless communication by using microwave inverse scattering nanomesh (MISN) technique instead of conventional techniques can be adopted to characterize the microwave scattered signals from the biomarkers. It reveals that the nanostructured material with plasmonic nanobiosensor paves a fascinating platform towards early detection of cancer tumour and is anticipated to be exploited as a magnificent field in the future.


Asunto(s)
Técnicas Biosensibles/métodos , Detección Precoz del Cáncer/métodos , Nanoestructuras/química , Neoplasias/diagnóstico , Animales , Técnicas Biosensibles/instrumentación , Detección Precoz del Cáncer/instrumentación , Diseño de Equipo , Humanos , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Nanotecnología/métodos , Resonancia por Plasmón de Superficie/instrumentación , Resonancia por Plasmón de Superficie/métodos , Tecnología Inalámbrica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA