Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Protoplasma ; 259(6): 1455-1466, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35195768

RESUMEN

The drug development process is one of the important aspects of medical biology. The classical lead identification strategy in the way of drug development based on animal cell is time-consuming, expensive and involving ethical issues. The following study aims to develop a novel plant-based screening of drugs. Study shows the efficacy of certain anti-cancerous drugs (Pemetrexed, 5-Fluorouracil, Methotrexate, Topotecan and Etoposide) on a plant-based (Lathyrus sativus L.) system. Two important characteristics of cancer cells were observed in the colchicine-treated polyploid cell and the callus, where the chromosome numbers were unusual and the division of cells were uncontrolled respectively. With increasing concentration, the drugs significantly reduced the mitotic index, ploidy level and callus growth. Increasing Pemetrexed concentration decreased the plant DHFR activity. A decrease in total RNA content was observed in 5-FU and Methotrexate with increasing concentrations of the drugs. Etoposide and Topotecan inhibited plant topoisomerase II and topoisomerase I activities, which was justified through plasmid nicking and comet assay, respectively. Molecular and biochemical study revealed similar results to the animal system. The in silico study had been done, and the structural similarity of drug binding domains of L. sativus and human beings had also been established. The binding site of the selected drugs to the domains of plant target proteins was also determined. Experimental results are significant in terms of the efficacy of known anti-cancerous drugs on the plant-based system. The proposed assay system is a cost-effective, convenient and less time-consuming process for primary screening of anti-cancerous lead molecules.


Asunto(s)
Lathyrus , Colchicina/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Etopósido/farmacología , Fluorouracilo/metabolismo , Humanos , Lathyrus/química , Lathyrus/genética , Lathyrus/metabolismo , Metotrexato/metabolismo , Metotrexato/farmacología , Pemetrexed/metabolismo , Proteínas de Plantas/metabolismo , ARN/metabolismo , Topotecan/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA