Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(36): 14531-14540, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39196537

RESUMEN

Elevating the column temperature is an effective strategy for improving the chromatographic separation of peptides. However, high temperatures induce artificial modifications that compromise the quality of the peptide analysis. Here, we present a novel high-temperature LC-MS method that retains the benefits of a high column temperature while significantly reducing peptide modification and degradation during reversed-phase liquid chromatography. Our approach leverages a short inline trap column maintained at a near-ambient temperature installed upstream of a separation column. The retentivity and dimensions of the trap column were optimized to shorten the residence time of peptides in the heated separation column without compromising the separation performance. This easy-to-implement approach increased peak capacity by 1.4-fold within a 110 min peptide mapping of trastuzumab and provided 10% more peptide identifications in exploratory LC-MS proteomic analyses compared with analyses conducted at 30 °C while maintaining the extent of modifications close to the background level. In the peptide mapping of biopharmaceuticals, where in-column modifications can falsely elevate the levels of some critical quality attributes, the method reduced temperature-related artifacts by 66% for N-terminal pyroGlu and 63% for oxidized Met compared to direct injection at 60 °C, thus improving reliability in quality control of protein drugs. Our findings represent a promising advancement in LC-MS methodology, providing researchers and industry professionals with a valuable tool for improving the chromatographic separation of peptides while significantly reducing the unwanted modifications.


Asunto(s)
Proteómica , Control de Calidad , Proteómica/métodos , Calor , Cromatografía Liquida/métodos , Trastuzumab/química , Trastuzumab/análisis , Péptidos/análisis , Péptidos/química , Espectrometría de Masas , Proteínas/análisis , Proteínas/aislamiento & purificación , Proteínas/química , Productos Biológicos/análisis , Productos Biológicos/química , Cromatografía Líquida con Espectrometría de Masas
2.
J Chromatogr A ; 1730: 465142, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39002507

RESUMEN

We have recently demonstrated the ability of a C18 stationary phase with a positively charged surface (PCS-C18) to provide superior chromatographic separation of peptides using mobile phase acidified with a mere 0.01 % formic acid, significantly improving MS sensitivity. Here, we examined three columns packed with different PCS-C18 phases using the MS-favorable mobile phase acidified with low formic acid concentrations to establish the impact of separation performance and better MS sensitivity on peptide identifications. The surface charge interaction was evaluated using the retention of nitrate. The highest interaction was observed for the AdvanceBio Peptide Plus column. A surface charge-dependent shift in the retention time of peptides was confirmed with a change in formic acid concentration in the mobile phase. The separation performance of the columns with MS-favorable mobile phase acidified with low concentrations of formic acid was evaluated using well-characterized peptides. The loading capacity was assessed using a basic peptide with three lysine residues. Good chromatographic peak shapes and high loading capacity were observed for the Acquity Premier CSH C18 column, even when using a mobile phase acidified with 0.01 % formic acid. The extent of improvement in peptide identification when using reduced formic acid concentration was evaluated by analyzing the tryptic digest of trastuzumab and tryptic digest of whole bacteria cell lysate. Each column provided improved MS signal intensity and peptide identification when using the mobile phase with 0.01 % formic acid. The ability of the Acquity Premier CSH C18 column to provide better separation of peptides, even with a reduced formic acid concentration in the mobile phase, boosted MS signal intensity by 65 % and increased the number of identified peptides from the bacterial sample by 19 %. Our study confirms that significant improvement in the proteomic outputs can be achieved without additional costs only by tailoring the chemistry of the stationary phase to the composition of the mobile phase. Our results can help researchers understand the retention mechanism of peptides on the PCS-C18 stationary phases using low-ionic strength mobile phases and, more importantly, select the best-suited stationary phases for their LC-MS proteomic applications.


Asunto(s)
Formiatos , Proteómica , Formiatos/química , Proteómica/métodos , Cromatografía Liquida/métodos , Péptidos/química , Péptidos/análisis , Péptidos/aislamiento & purificación , Trastuzumab/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas
3.
Analyst ; 148(23): 5980-5990, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37870390

RESUMEN

The default choice of mobile phase acidifier for bottom-up LC-MS proteomic analyses is 0.10% formic acid because of its decent acidity, decent ion pairing ability, and low suppression of electrospray ionization. In recent years, state-of-the-art columns have been designed specifically to provide efficient separation even when using an MS-friendly mobile phase of low ionic strength. Despite this, no attempts have been made to improve the sensitivity of the MS-based analytical methods by reducing the amount of formic acid in the mobile phase. In this study, we evaluated the effect of reduced formic acid concentration in the mobile phase on the chromatographic behavior and MS response of peptides when separated using columns packed with a C18 stationary phase with a positively charged surface. Using 0.01% formic acid in the mobile phase maintained excellent chromatographic performance and increased MS signal response compared to the standard of 0.10%. The enhanced MS response translated to about 50% improved peptide identifications depending on the complexity and amount of sample injected. The increased retention of peptides at a reduced formic acid concentration was directly proportional to the number of acidic residues in the peptide sequence. The study was carried out by covering a spectrum of protein samples with varied complexity using analytical flow, micro-, and nanoflow regimes to expand the applicability in routine practice.


Asunto(s)
Proteómica , Espectrometría de Masa por Ionización de Electrospray , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos
4.
Anal Chem ; 95(33): 12339-12348, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37565982

RESUMEN

Sample preparation involving the cleavage of proteins into peptides is the first critical step for successful bottom-up proteomics and protein analyses. Time- and labor-intensiveness are among the bottlenecks of the commonly used methods for protein sample preparation. Here, we report a fast online method for postinjection acid cleavage of proteins directly in the mobile phase typically used for LC-MS analyses in proteomics. The chemical cleavage is achieved in 0.1% formic acid within 35 s in a capillary heated to 195 °C installed upstream of the analytical column, enabling the generated peptides to be separated. The peptides generated by the optimized method covered the entire sequence except for one amino acid of trastuzumab used for the method development. The qualitative results are extraordinarily stable, even over a long period of time. Moreover, the method is also suitable for accurate and repeatable quantification. The procedure requires only one manual step, significantly decreasing sample transfer losses. To demonstrate its practical utility, we tested the method for the fast detection of ricin. Ricin can be unambiguously identified from an injection of 10 ng, and the results can be obtained within 7-8 min after receiving a suspicious sample. Because no sophisticated accessories and no additional reagents are needed, the method can be seamlessly transferred to any laboratory for high-throughput proteomic workflows.


Asunto(s)
Ricina , Cromatografía Liquida/métodos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Proteínas/análisis , Péptidos
5.
J Proteome Res ; 21(12): 2846-2892, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36355445

RESUMEN

The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.


Asunto(s)
Cromatografía de Fase Inversa , Proteómica , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Espectrometría de Masas/métodos , Péptidos/análisis , Proteómica/métodos
6.
Talanta ; 233: 122512, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34215127

RESUMEN

A wide range of strategies for efficient chromatography and high MS sensitivity in reversed-phase LC-MS analysis of antibody biopharmaceuticals and their large derivates has been evaluated. They included replacing trifluoroacetic acid with alternative acidifiers, relevancy of elevated column temperature, use of dedicated stationary phases, and counteraction of the suppression effect of trifluoroacetic acid in electrospray ionization. At the column temperature of 60 °C, which significantly reduces in-column protein degradation, the BioResolve RP mAb Polyphenyl, BioShell IgG C4 columns performed best using mobile phases with full or partial replacement of trifluoroacetic acid with difluoroacetic acid in the analysis of intact antibodies. Similarly, 0.03% trifluoroacetic acid in combination with 0.07% formic acid is a good alternative in analyzing antibody chains at 60 °C. Collectively, the addition of 3% 1-butanol to the mobile phase acidified with 0.1% formic acid was the most efficient approach to simultaneously achieving good chromatographic separation and MS sensitivity for intact and reduced antibody biopharmaceuticals. Moreover, this mobile phase combined with the BioResolve RP mAb Polyphenyl column was subsequently demonstrated to provide excellent results for peptide mapping of antibody biopharmaceuticals fully comparable with those obtained using a state-of-the-art column for peptide separation, thus opening an avenue for a single-column multilevel analysis of these biotherapeutics.


Asunto(s)
Productos Biológicos , Anticuerpos , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ácido Trifluoroacético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA