Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-496718

RESUMEN

While immune correlates against SARS-CoV-2 are typically defined at peak immunogenicity following vaccination, immunologic responses that expand selectively during the anamnestic response following infection can provide mechanistic and detailed insights into the immune mechanisms of protection. Moreover, whether anamnestic correlates are conserved across VoCs, including the Delta and more distant Omicron variant of concern (VoC), remains unclear. To define the anamnestic correlates of immunity, across VOCs, we deeply profiled the humoral immune response in individuals recently infected with either the Delta or Omicron VoC. While limited acute N-terminal domain and RBD-specific immune expansion was observed following breakthrough, a significant immunodominant expansion of opsinophagocytic Spike-specific antibody responses focused largely on the conserved S2-domain of SARS-CoV-2 was observed 1 week after breakthrough infection. This S2-specific functional humoral response continued to evolve over 2-3 weeks following both Delta and Omicron breakthrough infection, targeting multiple VoCs and common coronaviruses. These responses were focused largely on the fusion peptide 2 and heptad repeat 1, both associated with enhanced rates of viral clearance. Taken together, our results point to a critical role of highly conserved, functional S2-specific responses in the control of SARS-CoV-2 infection, across VOCs, and thus humoral response linked to virus attenuation can guide next-generation generation vaccine boosting approaches to confer broad protection against future SARS-CoV-2 VoCs.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22275326

RESUMEN

We enrolled seven individuals with recurrent symptoms following nirmatrelvir-ritonavir treatment. High viral loads (median 6.1 log10 copies/mL) were detected at enrollment and for a median of 17 days after initial diagnosis. Three of seven had culturable virus for up to 16 days after initial diagnosis. No known resistance-associated mutations were identified.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22271731

RESUMEN

There is increasing evidence that the risk of SARS-CoV-2 infection among vaccinated individuals is variant-specific, suggesting that protective immunity against SARS-CoV-2 may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. For individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22271582

RESUMEN

Clinical features of SARS-CoV-2 Omicron variant infection, including incubation period and transmission rates, distinguish this variant from preceding variants. However, whether the duration of shedding of viable virus differs between omicron and previous variants is not well understood. To characterize how variant and vaccination status impact shedding of viable virus, we serially sampled symptomatic outpatients newly diagnosed with COVID-19. Anterior nasal swabs were tested for viral load, sequencing, and viral culture. Time to PCR conversion was similar between individuals infected with the Delta and the Omicron variant. Time to culture conversion was also similar, with a median time to culture conversion of 6 days (interquartile range 4-8 days) in both groups. There were also no differences in time to PCR or culture conversion by vaccination status.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21265137

RESUMEN

Multiple summer events, including large indoor gatherings, in Provincetown, Massachusetts (MA), in July 2021 contributed to an outbreak of over one thousand COVID-19 cases among residents and visitors. Most cases were fully vaccinated, many of whom were also symptomatic, prompting a comprehensive public health response, motivating changes to national masking recommendations, and raising questions about infection and transmission among vaccinated individuals. To characterize the outbreak and the viral population underlying it, we combined genomic and epidemiological data from 467 individuals, including 40% of known outbreak-associated cases. The Delta variant accounted for 99% of sequenced outbreak-associated cases. Phylogenetic analysis suggests over 40 sources of Delta in the dataset, with one responsible for a single cluster containing 83% of outbreak-associated genomes. This cluster was likely not the result of extensive spread at a single site, but rather transmission from a common source across multiple settings over a short time. Genomic and epidemiological data combined provide strong support for 25 transmission events from, including many between, fully vaccinated individuals; genomic data alone provides evidence for an additional 64. Together, genomic epidemiology provides a high-resolution picture of the Provincetown outbreak, revealing multiple cases of transmission of Delta from fully vaccinated individuals. However, despite its magnitude, the outbreak was restricted in its onward impact in MA and the US, likely due to high vaccination rates and a robust public health response.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21264641

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Deltas infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average [~]6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Deltas enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21263228

RESUMEN

Repeated emergence of SARS-CoV-2 variants with increased fitness necessitates rapid detection and characterization of new lineages. To address this need, we developed PyR0, a hierarchical Bayesian multinomial logistic regression model that infers relative prevalence of all viral lineages across geographic regions, detects lineages increasing in prevalence, and identifies mutations relevant to fitness. Applying PyR0 to all publicly available SARS-CoV-2 genomes, we identify numerous substitutions that increase fitness, including previously identified spike mutations and many non-spike mutations within the nucleocapsid and nonstructural proteins. PyR0 forecasts growth of new lineages from their mutational profile, identifies viral lineages of concern as they emerge, and prioritizes mutations of biological and public health concern for functional characterization. One Sentence summaryA Bayesian hierarchical model of all SARS-CoV-2 viral genomes predicts lineage fitness and identifies associated mutations.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260338

RESUMEN

BackgroundTherapeutically immunosuppressed transplant recipients exhibit attenuated responses to COVID-19 vaccines. To better understand the immune alterations that determined poor vaccine response, we correlated quantities of circulating T and B cell subsets at baseline with longitudinal serologic responses to SARS-CoV-2 mRNA vaccination in heart and lung transplant recipients. MethodsSamples at baseline and at approximately 8 and 30 days after each vaccine dose for 22 heart and lung transplant recipients with no history of COVID-19, four heart and lung transplant recipients with prior COVID-19 infection, and 12 healthy controls undergoing vaccination were analyzed. Anti-spike protein receptor binding domain (RBD) IgG and pseudovirus neutralization activity were measured. Proportions of B and T cell subsets at baseline were comprehensively quantitated. ResultsAt 8-30 days post vaccination, healthy controls displayed robust anti-RBD IgG responses, whereas heart and lung transplant recipients showed minimally increased responses. A parallel absence of activity was observed in pseudovirus neutralization. In contrast, three of four (75%) transplant recipients with prior COVID-19 infection displayed robust responses at levels comparable to controls. Baseline levels of activated PD-1+ HLA-DR+ CXCR5- CD4+ T cells (also known as T peripheral helper [TPH] cells) and CD4+ T cells strongly predicted the ability to mount a response. ConclusionsImmunosuppressed patients have defective vaccine responses but can be induced to generate neutralizing antibodies after SARS-CoV-2 infection. Strong correlations of vaccine responsiveness with baseline TPH and CD4+ T cell numbers highlights a role for T helper activity in B cell differentiation into antibody secreting cells during vaccine response.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-435654

RESUMEN

The rapid global spread and continued evolution of SARS-CoV-2 has highlighted an unprecedented need for viral genomic surveillance and clinical viral sequencing. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine lab processes and results. This challenge will only increase with expanding global production of sequences by diverse research groups for epidemiological and clinical interpretation. We present an approach which uses synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination through a sequencing workflow. Applying this approach to the ARTIC Consortiums amplicon design, we define a series of best practices for Illumina-based sequencing and provide a detailed characterization of approaches to increase sensitivity for low-viral load samples incorporating the SDSIs. We demonstrate the utility and efficiency of the SDSI method amidst a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-187757

RESUMEN

The SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and cells rendered permissive by ectopic expression of various mammalian ACE2 orthologs. Nonetheless, D614G affinity for ACE2 was reduced due to a faster dissociation rate. Assessment of the S protein trimer by cryo-electron microscopy showed that D614G disrupts a critical interprotomer contact and that this dramatically shifts the S protein trimer conformation toward an ACE2-binding and fusion-competent state. Consistent with the more open conformation, neutralization potency of antibodies targeting the S protein receptor-binding domain was not attenuated. These results indicate that D614G adopts conformations that make virion membrane fusion with the target cell membrane more probable but that D614G retains susceptibility to therapies that disrupt interaction of the SARS-CoV-2 S protein with the ACE2 receptor.

11.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-119131

RESUMEN

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (SHERLOCK and HUDSON Integration to Navigate Epidemics), a sensitive and specific integrated diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We combine the steps of SHERLOCK into a single-step reaction and optimize HUDSON to accelerate viral inactivation in nasopharyngeal swabs and saliva. SHINEs results can be visualized with an in-tube fluorescent readout -- reducing contamination risk as amplification reaction tubes remain sealed -- and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-PCR with a sample-to-answer time of 50 minutes. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA