Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(3): 223, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493149

RESUMEN

Spalt-like proteins are Zinc finger transcription factors from Caenorhabditis elegans to vertebrates, with critical roles in development. In vertebrates, four paralogues have been identified (SALL1-4), and SALL2 is the family's most dissimilar member. SALL2 is required during brain and eye development. It is downregulated in cancer and acts as a tumor suppressor, promoting cell cycle arrest and cell death. Despite its critical functions, information about SALL2 regulation is scarce. Public data indicate that SALL2 is ubiquitinated and phosphorylated in several residues along the protein, but the mechanisms, biological consequences, and enzymes responsible for these modifications remain unknown. Bioinformatic analyses identified several putative phosphorylation sites for Casein Kinase II (CK2) located within a highly conserved C-terminal PEST degradation motif of SALL2. CK2 is a serine/threonine kinase that promotes cell proliferation and survival and is often hyperactivated in cancer. We demonstrated that CK2 phosphorylates SALL2 residues S763, T778, S802, and S806 and promotes SALL2 degradation by the proteasome. Accordingly, pharmacological inhibition of CK2 with Silmitasertib (CX-4945) restored endogenous SALL2 protein levels in SALL2-deficient breast MDA-MB-231, lung H1299, and colon SW480 cancer cells. Silmitasertib induced a methuosis-like phenotype and cell death in SW480 cells. However, the phenotype was significantly attenuated in CRISPr/Cas9-mediated SALL2 knockout SW480 cells. Similarly, Sall2-deficient tumor organoids were more resistant to Silmitasertib-induced cell death, confirming that SALL2 sensitizes cancer cells to CK2 inhibition. We identified a novel CK2-dependent mechanism for SALL2 regulation and provided new insights into the interplay between these two proteins and their role in cell survival and proliferation.


Asunto(s)
Quinasa de la Caseína II , Neoplasias del Colon , Animales , Humanos , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias del Colon/genética , Línea Celular Tumoral
2.
Clin Exp Metastasis ; 34(8): 449-456, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29589151

RESUMEN

New experimental tools are urgently required to better understand the metastatic process. The importance of such tools is underscored by the fact that many anti-cancer therapies are generally ineffective against established metastases. This makes a major contribution to the fact that metastatic spread is responsible for over 90% of cancer patient deaths. It was therefore timely that the recent "Seed and Soil: In Vivo Models of Metastasis" conference held in Berlin, Germany (27-29 of November 2017) aimed to give an in-depth overview of the latest research models and tools for studying metastasis, and to showcase recent findings from world-leading metastasis researchers. This Meeting Report summarises the major themes of this ground-breaking conference.


Asunto(s)
Modelos Animales de Enfermedad , Siembra Neoplásica , Neoplasias/patología , Células Madre Neoplásicas/patología , Animales , Congresos como Asunto , Humanos , Metástasis de la Neoplasia
3.
Cell Death Dis ; 4: e775, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23949224

RESUMEN

Here we analyzed the function of the c-MYC-inducible basic helix-loop-helix leucine-zipper transcription factor AP4 in AP4-deficient mouse embryo fibroblasts (MEFs). Loss of AP4 resulted in premature senescence and resistance towards immortalization. Senescence was accompanied by induction of the cyclin-dependent kinase inhibitor-encoding genes p16, a known tumor suppressor, and p21, a previously described target for repression by AP4. Notably, AP4 directly repressed p16 expression via conserved E-box motifs in MEFs and human diploid fibroblasts. Senescence caused by AP4-deficiency was prevented by depletion of p16 and/or p21, demonstrating that these factors mediate senescence caused by AP4 loss. As senescence induced by the loss of AP4 was rescued by ectopic AP4, secondary lesions were not involved in causing premature senescence. Activation of c-MYC resulted in repression of p21 and p16 in AP4(+/+), but not in AP4(-/-) MEFs. Furthermore, after combined expression of c-MYC and mutant RAS in MEFs, AP4 was required for colony formation, anchorage-independent growth and tumor formation in mice. In addition, combined ectopic expression of AP4 and mutant RAS in MEFs resulted in colony formation. However, additional loss of the p53 tumor suppressor was necessary for anchorage-independent growth and tumor formation of MEFs by combined AP4 and mutant RAS expression. In conclusion, this study identified AP4 as an oncogenic antagonist of cellular senescence. AP4 achieves this effect by direct repression of p16 and p21, and may thereby critically contribute to c-MYC function and tumor progression.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Transformación Celular Neoplásica/metabolismo , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo , Factores de Transcripción/metabolismo , Animales , Proliferación Celular , Transformación Celular Neoplásica/patología , Proteínas de Unión al ADN , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Fenotipo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN , Factores de Transcripción/deficiencia , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA