Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 10: 2730, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849882

RESUMEN

Biofilms are multifaceted and robust microbiological systems that enable microorganisms to withstand a multitude of environmental stresses and expand their habitat range. We have shown previously that nutritional status alters antibiotic susceptibility in a mixed-species biofilm. To further elucidate the effects of nutrient addition on inter-species dynamics and whole-biofilm susceptibility to high-dose streptomycin exposures, a CO2 Evolution Measurement System was used to monitor the metabolic activity of early steady state pure-culture and mixed-species biofilms containing Pseudomonas aeruginosa and Stenotrophomonas maltophilia, with and without added carbon. Carbon supplementation was needed for biofilm recovery from high-dose streptomycin exposures when P. aeruginosa was either the dominant community member in a mixed-species biofilm (containing predominantly P. aeruginosa and S. maltophilia) or as a pure culture. By contrast, S. maltophilia biofilms could recover from high-dose streptomycin exposures without the need for carbon addition during antibiotic exposure. Metagenomic analysis revealed that even when inocula were dominated by Pseudomonas, the relative abundance of Stenotrophomonas increased upon biofilm development to ultimately become the dominant species post-streptomycin exposure. The combined metabolic and metagenomic results demonstrated the relevance of inter-species influence on survival and that nutritional status has a strong influence on the survival of P. aeruginosa dominated biofilms.

2.
Front Microbiol ; 6: 953, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441887

RESUMEN

Biofilms typically exist as complex communities comprising multiple species with the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic treatments based on planktonic susceptibility tests are often ineffective against biofilm infections. Using a CO2 evolution measurement system we delineated the real-time metabolic response in continuous flow biofilms to streptomycin doses much greater than their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1 and PAO1 ΔMexXY (minimum planktonic inhibitory concentrations between 1.5 and 3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after which growth medium resumed. In complex medium, early steady state multispecies biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2 production. However, multispecies biofilms survived high dose exposures when there was extra carbon in the antibiotic medium, or when they were grown in defined citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic profiles in response to streptomycin; ceasing CO2 production after initial exposure, with CO2 levels dropping toward baseline levels prior to recovery back to steady state levels, while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm metabolic response in real-time allowed exploration of conditions resulting in vulnerability after antibiotic exposure compared to the resistance displayed following subsequent exposures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA