RESUMEN
We aimed to analyze the seasonal acclimatization process of Nelore and Canchim cattle raised on two production systems (non-shaded, NS, and integrated crop-livestock-forest, ICLF), based on the dynamics of the morphological and functional attributes of the hair coat and skin during winter and summer. The study was conducted in Brazil, in a low-altitude tropical climate region. A completely randomized 2 × 2 factorial design was adopted as follows: two production systems (NS and ICLF), two breeds (Nelore and Canchim) in a longitudinal structure, with measurements repeated over time through two stations (winter and summer). The experimental animals consisted of 32 Nelore (Bos indicus) and 32 Canchim (5/8 Bos taurus × 3/8 Bos indicus) bulls. The animals were equally distributed between two intensive rotational grazing systems. In both breeds, the hair coat was significantly thicker in winter but longer in summer, which increased epidermal protection. The Nelore bulls had shorter, wider, and thicker hairs, which are attributes that promote heat loss via conduction. The Canchim bulls showed significantly lower hair density and higher epithelium distance to sweat glands, which resulted in higher core temperature and respiratory rate. In turn, Nelore bulls had higher serum concentrations of triiodothyronine and lower serum concentrations of cortisol. However, Canchim bulls more frequently and intensely activated their thermoregulatory system and markedly adjusted their hair coat and hair features to reduce heat gain, especially in summer. Therefore, the anatomical plasticity and functional integumentary characteristics of Nelore and Canchim bulls reflect their acclimatization to tropical conditions.
Asunto(s)
Estaciones del Año , Clima Tropical , Animales , Bovinos , Brasil , Aclimatación/fisiología , Masculino , Cabello/fisiología , Pelaje de AnimalRESUMEN
The thermolytic capacity test is used to assess the adaptability of animals to existing environmental conditions. However, there is insufficient information on the relationship between histomorphometry and adaptability of buffaloes. Thus, this study aimed to assess the use of thermolysis pathways by buffaloes reared in a hot and humid environment so as to understand the relationships between environment, skin morphological characteristics, and heat storage, as well as the intensity and proportionality of use of its ways of dissipating heat to maintain homeothermy. The heat tolerance test, associated with the evaluations via infrared thermography, was applied to 10 female Murrah buffaloes and tegument histomorphometry was carried out. The animals exhibited very high heat tolerance with an average of 9.66 ± 0.21 and used thermal polypnea as the main heat dissipation pathway. Their mean skin thickness was 6.03 ± 1.16 mm and the active sweat and sebaceous gland tissue were 1.57 ± 0.38% and 1.08 ± 0.39%, respectively. The buffaloes exhibited a positive correlation between eyeball temperature and internal body temperature (r = 0.84523, p < 0.0001) and a negative correlation between respiratory rate and skin thickness (r = -0.73371, p = 0.0157). The high thermolytic capacity in shade conditions confirms the importance of access to shade in buffalo rearing systems in tropical regions.