Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 399: 111138, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38992768

RESUMEN

Oxidative stress status, as a disruption of redox homeostasis, in the blood sera of Wistar rats caused by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Throughout this study, each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Then, seven days after the last oximes' application, markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, reduced glutathione, GSH, and oxidized glutathione, GSSG), were determined. Oxidative stress parameters, MDA and AOPP were significantly highest in the K048-, K074- and K075-treated groups (p < 0.001). The activity of CAT was significantly elevated in the obidoxime-treated group (p < 0.05), while treatment with K027, K048, and K074 induced high elevation in SOD levels (p < 0.01, p < 0.001). Interestingly, the activity of GSH in each oxime-treated group was significantly elevated. Unlike, treatment with obidoxime caused elevation in GSSG levels (p < 0.01). As a continuation of our previously published data, these results assure that applied oximes following subacute treatment ameliorated the oxidative status and further adverse systemic toxic effects in rats.


Asunto(s)
Biomarcadores , Glutatión , Estrés Oxidativo , Oximas , Ratas Wistar , Animales , Estrés Oxidativo/efectos de los fármacos , Oximas/farmacología , Biomarcadores/sangre , Ratas , Masculino , Glutatión/sangre , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/sangre , Peroxidación de Lípido/efectos de los fármacos , Catalasa/metabolismo , Catalasa/sangre , Malondialdehído/sangre , Malondialdehído/metabolismo , Reactivadores de la Colinesterasa/farmacología , Productos Avanzados de Oxidación de Proteínas/sangre , Antioxidantes/metabolismo , Antioxidantes/farmacología
2.
Antioxidants (Basel) ; 12(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38136208

RESUMEN

Cardiovascular diseases (CVDs) are a group of diseases with a very high rate of morbidity and mortality. The clinical presentation of CVDs can vary from asymptomatic to classic symptoms such as chest pain in patients with myocardial infarction. Current therapeutics for CVDs mainly target disease symptoms. The most common CVDs are coronary artery disease, acute myocardial infarction, atrial fibrillation, chronic heart failure, arterial hypertension, and valvular heart disease. In their treatment, conventional therapies and pharmacological therapies are used. However, the use of herbal medicines in the therapy of these diseases has also been reported in the literature, resulting in a need for critical evaluation of advances related to their use. Therefore, we carried out a narrative review of pharmacological and herbal therapeutic effects reported for these diseases. Data for this comprehensive review were obtained from electronic databases such as MedLine, PubMed, Web of Science, Scopus, and Google Scholar. Conventional therapy requires an individual approach to the patients, as when patients do not respond well, this often causes allergic effects or various other unwanted effects. Nowadays, medicinal plants as therapeutics are frequently used in different parts of the world. Preclinical/clinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common CVDs. The natural products analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in CVDs pharmacotherapy, and some of them have already been approved by the FDA. There are insufficient clinical studies to compare the effectiveness of natural products compared to approved therapeutics for the treatment of CVDs. Further long-term studies are needed to accelerate the potential of using natural products for these diseases. Despite this undoubted beneficence on CVDs, there are no strong breakthroughs supporting the implementation of natural products in clinical practice. Nevertheless, they are promising agents in the supplementation and co-therapy of CVDs.

3.
Biomed Pharmacother ; 167: 115600, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783152

RESUMEN

Frentizole is immunosuppressive drug with low acute toxicity and lifespan-prolonging effect. Recently, frentizole´s potential to disrupt toxic amyloid ß (Aß) - Aß-binding alcohol dehydrogenase (ABAD) interaction in mitochondria in Alzheimer´s brains has been revealed. Another broadly studied drug with anti-aging and immunosuppressive properties is an mTOR inhibitor - rapamycin. Since we do not yet precisely know what is behind the lifespan-prolonging effect of rapamycin and frentizole, whether it is the ability to inhibit the mTOR signaling pathway, reduction in mitochondrial toxicity, immunosuppressive effect, or a combination of all of them, we have decided within our previous work to dock the entire in-house library of almost 240 Aß-ABAD modulators into the FKBP-rapamycin-binding (FRB) domain of mTOR in order to interlink mTOR-centric and mitochondrial free radical-centric theories of aging and thus to increase the chances of success. Based on the results of the docking study, molecular dynamic simulation and MM-PBSA calculations, we have selected nine frentizole-like compounds (1 - 9). Subsequently, we have determined their real physical-chemical properties (logP, logD, pKa and solubility in water and buffer), cytotoxic/cytostatic, mTOR inhibitory, and in vitro anti-senescence (senolytic and senomorphic) effects. Finally, the three best candidates (4, 8, and 9) have been forwarded for in vivo safety studies to assess their acute toxicity and pharmacokinetic properties. Based on obtained results, only compound 4 demonstrated the best results within in vitro testing, the ability to cross the blood-brain barrier and the lowest acute toxicity (LD50 in male mice 559 mg/kg; LD50 in female mice 575 mg/kg).


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Femenino , Masculino , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Senoterapéuticos , Inmunosupresores , Sirolimus , Serina-Treonina Quinasas TOR
4.
Cancers (Basel) ; 15(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37627134

RESUMEN

BACKGROUND: Approximately 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience treatment resistance to the first-line R-CHOP regimen. ATP binding cassette (ABC) transporters and survivin might play a role in multidrug resistance (MDR) in various tumors. The aim was to investigate if the coexpression of ABC transporters and survivin was associated with R-CHOP treatment response. METHODS: The expression of Bcl-2, survivin, P-glycoprotein/ABCB1, MRP1/ABCC1, and BCRP/ABCC2 was analyzed using immunohistochemistry in tumor specimens obtained from patients with DLBCL, and classified according to the treatment response as Remission, Relapsed, and (primary) Refractory groups. All patients received R-CHOP or equivalent treatment. RESULTS: Bcl-2 was in strong positive correlation with clinical parameters and all biomarkers except P-gp/ABCB1. The overexpression of MRP1/ABCC1, survivin, and BCRP/ABCC2 presented as high immunoreactive scores (IRSs) was detected in the Refractory and Relapsed groups (p < 0.05 vs. Remission), respectively, whereas the IRS of P-gp/ABCB1 was low. Significant correlations were found among either MRP1/ABCC1 and survivin or BCRP/ABCC2 in the Refractory and Relapsed groups, respectively. In multiple linear regression analysis, ECOG status along with MRP1/ABCC1 or survivin and BRCP/ABCG2 was significantly associated with the prediction of the R-CHOP treatment response. CONCLUSIONS: DLBCL might harbor certain molecular signatures such as MRP1/ABCC1, survivin, and BCRP/ABCC2 overexpression that can predict resistance to R-CHOP.

5.
Chem Biol Interact ; 383: 110658, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37572873

RESUMEN

Oxidative stress status and morphological injuries in the brain of Wistar rats induced by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, glutathione reductase, GR, and glutathione peroxidase, GPx), were estimated in the brain tissue homogenates on day 35 of the study. Brain alterations were carefully quantified by semiquantitative grading scales - brain damage score (BDS). Oxidative stress parameters, MDA and AOPP were significantly highest in the asoxime-, obidoxime- and K075-treated groups (p < 0.001). The activity of SOD and CAT was significantly elevated in the obidoxime-, K048-, and K075-treated groups (p < 0.001). Besides, GR was markedly decreased in the obidoxime- and K074-treated groups (p < 0.01), while treatment with K048, K074 and K075 induced extremely high elevation in GPx levels (p < 0.001). In the same groups of rats, brain alterations associated with polymorphonuclear cell infiltrate were significantly more severe than those observed in animals receiving only asoxime or K027 (p < 0.001). The presented results confirmed that treatment with different oximes significantly improved the oxidative status and attenuated signs of inflammation in rats' brains. Presented results, together with our previously published data can help to predict likely adverse systemic toxic effects, and target organ systems, which are crucial for establishing risk categories, as well as in dose selection of K-oximes as drug candidates.


Asunto(s)
Cloruro de Obidoxima , Oximas , Ratas , Animales , Oximas/farmacología , Cloruro de Obidoxima/farmacología , Ratas Wistar , Acetilcolinesterasa/metabolismo , Productos Avanzados de Oxidación de Proteínas/metabolismo , Productos Avanzados de Oxidación de Proteínas/farmacología , Estrés Oxidativo , Encéfalo , Superóxido Dismutasa/metabolismo
6.
Toxicology ; 492: 153549, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209941

RESUMEN

Serious health risks associated with the consumption of food products contaminated with aflatoxins (AFs) are worldwide recognized and depend predominantly on consumed AF concentration by diet. A low concentration of aflatoxins in cereals and related food commodities is unavoidable, especially in subtropic and tropic regions. Accordingly, risk assessment guidelines established by regulatory bodies in different countries help in the prevention of aflatoxin intoxication and the protection of public health. By assessing the maximal levels of aflatoxins in food products which are a potential risk to human health, it's possible to establish appropriate risk management strategies. Regarding, a few factors are crucial for making a rational risk management decision, such as toxicological profile, adequate information concerning the exposure duration, availability of routine and some novel analytical techniques, socioeconomic factors, food intake patterns, and maximal allowed levels of each aflatoxin in different food products which may be varied between countries.


Asunto(s)
Aflatoxinas , Contaminación de Alimentos , Humanos , Contaminación de Alimentos/prevención & control , Aflatoxinas/toxicidad , Aflatoxinas/análisis , Aflatoxinas/metabolismo , Dieta , Medición de Riesgo , Alimentos
7.
Front Pharmacol ; 13: 796336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784683

RESUMEN

Itraconazole is a triazole antifungal agent with highly variable pharmacokinetics, with not yet fully identified factors as the source of this variability. Our study aimed to examine the influence of body mass index, gender, and age on the first dose pharmacokinetics of itraconazole in healthy subjects, using pharmacokinetic modeling, non-compartmental versus compartmental ones. A total of 114 itraconazole and hydroxy-itraconazole sets of plasma concentrations of healthy subjects of both genders, determined using a validated liquid chromatographic method with mass spectrometric detection (LC-MS), were obtained for pharmacokinetic analyses performed by the computer program Kinetica 5®. Genetic polymorphism in CYP3A4, CYP3A5, CYP1A1, CYP2C9, and CYP2C19 was analyzed using PCR-based methods. Multiple linear regression analysis indicated that gender had a significant effect on AUC as the most important pharmacokinetics endpoint, whereas body mass index and age did not show such an influence. Therefore, further analysis considered gender and indicated that both geometric mean values of itraconazole and hydroxy-itraconazole plasma concentrations in men were prominently higher than those in women. A significant reduction of the geometric mean values of Cmax and AUC and increment of Vd in females compared with males were obtained. Analyzed genotypes and gender differences in drug pharmacokinetics could not be related. Non-compartmental and one-compartmental models complemented each other, whereas the application of the two-compartmental model showed a significant correlation with the analysis of one compartment. They indicated a significant influence of gender on itraconazole pharmacokinetics after administration of the single oral dose of the drug, given under fed conditions. Women were less exposed to itraconazole and hydroxy-itraconazole than men due to poorer absorption of itraconazole, its more intense pre-systemic metabolism, and higher distribution of both drug and its metabolite.

8.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269738

RESUMEN

Disruption of the alveolar−endothelial barrier caused by inflammation leads to the progression of septic acute lung injury (ALI). In the present study, we investigated the beneficial effects of simvastatin on the endotoxin lipopolysaccharide (LPS)-induced ALI and its related mechanisms. A model of ALI was induced within experimental sepsis developed by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment (10−40 mg/kg orally). The severity of the lung tissue inflammatory injury was expressed as pulmonary damage scores (PDS). Alveolar epithelial cell apoptosis was confirmed by TUNEL assay (DNA fragmentation) and expressed as an apoptotic index (AI), and immunohistochemically for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL, an inhibitor of apoptosis, survivin, and transcriptional factor, NF-kB/p65. Severe inflammatory injury of pulmonary parenchyma (PDS 3.33 ± 0.48) was developed after the LPS challenge, whereas simvastatin significantly and dose-dependently protected lung histology after LPS (p < 0.01). Simvastatin in a dose of 40 mg/kg showed the most significant effects in amelioration alveolar epithelial cells apoptosis, demonstrating this as a marked decrease of AI (p < 0.01 vs. LPS), cytochrome C, and cleaved caspase-3 expression. Furthermore, simvastatin significantly enhanced the expression of Bcl-xL and survivin. Finally, the expression of survivin and its regulator NF-kB/p65 in the alveolar epithelium was in strong positive correlation across the groups. Simvastatin could play a protective role against LPS-induced ALI and apoptosis of the alveolar−endothelial barrier. Taken together, these effects were seemingly mediated by inhibition of caspase 3 and cytochrome C, a finding that might be associated with the up-regulation of cell-survival survivin/NF-kB/p65 pathway and Bcl-xL.


Asunto(s)
Lesión Pulmonar Aguda , FN-kappa B , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Células Epiteliales Alveolares/metabolismo , Apoptosis , Caspasa 3/genética , Caspasa 3/metabolismo , Citocromos c/metabolismo , Endotoxinas/efectos adversos , Humanos , Lipopolisacáridos/toxicidad , Pulmón/patología , FN-kappa B/metabolismo , Simvastatina/efectos adversos , Survivin/genética , Regulación hacia Arriba
9.
Biomed Pharmacother ; 154: 113642, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36942598

RESUMEN

BACKGROUND: The main cause of death among patients with malignant hypertension is a kidney failure. The promising field in essential and malignant hypertension therapy could be centered on the amelioration of oxidative stress using antioxidant molecules like resveratrol. Resveratrol is a potent antioxidative agent naturally occurred in many plants that possess health-promoting properties. METHODS: In the present study, we investigated the therapeutic potential of resveratrol, a polyphenol with anti-oxidative activity, in NG-L-Arginine Methyl Ester (L-NAME) treated spontaneously hypertensive rats (SHR) - malignantly hypertensive rats (MHR). RESULTS: Resveratrol significantly improves oxidative damages by modulation of antioxidant enzymes and suppression of prooxidant factors in the kidney tissue of MHR. Enhanced antioxidant defense in the kidney improves renal function and ameliorates the morphological changes in this target organ. Besides, protective properties of resveratrol are followed by the restoration of the nitrogen oxide (NO) pathway. 4) Conclusion: Antioxidant therapy with resveratrol could represent promising therapeutical approach in hypertension, especially malignant, against kidney damage.


Asunto(s)
Hipertensión Maligna , Hipertensión , Ratas , Animales , Antioxidantes/metabolismo , Resveratrol/farmacología , Resveratrol/uso terapéutico , Óxido Nítrico/metabolismo , Hipertensión Maligna/tratamiento farmacológico , Hipertensión Maligna/metabolismo , Hipertensión Maligna/patología , Disponibilidad Biológica , Hipertensión/metabolismo , Riñón/patología , Ratas Endogámicas SHR , Estrés Oxidativo , NG-Nitroarginina Metil Éster/metabolismo , Presión Sanguínea
10.
Food Chem Toxicol ; 155: 112397, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34246706

RESUMEN

The molecular target of mycotoxins is not fully understood. Extensive data derived from cell and animal experimental studies demonstrate that long non-coding RNAs (lncRNAs) play crucial roles in mycotoxin-induced toxicities. Mycotoxins stimulate the upregulation/downregulation of lncRNA expression, which further promote apoptosis, is related to the mTOR/FoxO signaling pathway, and contributes to tumor cell growth, death, and liver and chondrocyte damage. Moreover, lncRNA can establish interactions with NF-κB and cause immune evasion. These preliminary data suggest that lncRNAs are involved in potential upstream regulatory events and further regulate downstream apoptosis, oxidative stress, and anti-apoptotic events that affect cell death and survival. Therefore, we hypothesize that lncRNAs are potential targets of mycotoxins. Investigation of the expression of the potential target lncRNAs by mycotoxin-mediated stimulation, and exploration of the upstream and downstream relationship between lncRNA and the key proteins involved in mycotoxin toxicity, should be performed. This Hypothesis provides clues for further understanding of the molecular mechanisms of mycotoxins.


Asunto(s)
Micotoxinas/farmacología , ARN Largo no Codificante/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Humanos , Estrés Oxidativo/efectos de los fármacos , Escape del Tumor/efectos de los fármacos
11.
Int J Mol Sci ; 22(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066865

RESUMEN

Hypertension is one of the most prevalent and powerful contributors of cardiovascular diseases. Malignant hypertension is a relatively rare but extremely severe form of hypertension accompanied with heart, brain, and renal impairment. Resveratrol, a recently described grape-derived, polyphenolic antioxidant molecule, has been proposed as an effective agent in the prevention of cardiovascular diseases. This study was designed to examine chronic resveratrol administration on blood pressure, oxidative stress, and inflammation, with special emphasis on cardiac structure and function in two models of experimental hypertension. The experiments were performed in spontaneously (SHRs) and malignantly hypertensive rats (MHRs). The chronic administration of resveratrol significantly decreased blood pressure in both spontaneously and malignant hypertensive animals. The resveratrol treatment ameliorated morphological changes in the heart tissue. The immunohistochemistry of the heart tissue after resveratrol treatment showed that both TGF-ß and Bax were not present in the myocytes of SHRs and were present mainly in the myocytes of MHRs. Resveratrol suppressed lipid peroxidation and significantly improved oxidative status and release of NO. These results suggest that resveratrol prevents hypertrophic and apoptotic consequences induced by high blood pressure with more pronounced effects in malignant hypertension.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Apoptosis , Cardiotónicos/uso terapéutico , Hipertensión Maligna/tratamiento farmacológico , Resveratrol/uso terapéutico , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Cardiotónicos/farmacología , Femenino , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hemodinámica/efectos de los fármacos , Hipertensión Maligna/enzimología , Hipertensión Maligna/patología , Hipertensión Maligna/fisiopatología , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Miocardio/patología , NG-Nitroarginina Metil Éster/química , NG-Nitroarginina Metil Éster/farmacología , Tamaño de los Órganos/efectos de los fármacos , Oxidación-Reducción , Ratas Endogámicas SHR , Resveratrol/química , Resveratrol/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Proteína X Asociada a bcl-2/metabolismo
12.
Arch Toxicol ; 95(6): 1899-1915, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33765170

RESUMEN

T-2 toxin and deoxynivalenol (DON) are type A and B trichothecenes, respectively. They widely occur as pollutants in food and crops and cause a series of toxicities, including immunotoxicity, hepatotoxicity, and neurotoxicity. Oxidative stress is the primary mechanistic basis of these toxic effects. Increasing amounts of evidence have shown that mitochondria are significant targets of apoptosis caused by T-2 toxin- and DON-induced oxidative stress via regulation of Bax/B-cell lymphoma-2 and caspase-3/caspase-9 signaling. DNA methylation and autophagy are involved in oxidative stress related to apoptosis, and hypoxia and immune evasion are related to oxidative stress in this context. Hypoxia induces oxidative stress by stimulating mitochondrial reactive oxygen species production and regulates the expression of cytokines, such as interleukin-1ß and tumor necrosis factor-α. Programmed cell death-ligand 1 is upregulated by these cytokines and by hypoxia-inducible factor-1, which allows it to bind to programmed cell death-1 to enable escape of immune cell surveillance and achievement of immune evasion. This review concentrates on novel findings regarding the oxidative stress mechanisms of the trichothecenes T-2 toxin and DON. Importantly, we discuss the new evidence regarding the connection of hypoxia and immune evasion with oxidative stress in this context. Finally, the trinity of hypoxia, oxidative stress and immune evasion is highlighted. This work will be conducive to an improved understanding of the oxidative stress caused by trichothecene mycotoxins.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Toxina T-2/toxicidad , Tricotecenos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Humanos , Hipoxia/inducido químicamente , Evasión Inmune/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo
13.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008033

RESUMEN

Increasing evidence suggests that apoptosis of tubular cells and renal inflammation mainly determine the outcome of sepsis-associated acute kidney injury (AKI). The study aim was to investigate the molecular mechanism involved in the renoprotective effects of simvastatin in endotoxin (lipopolysaccharide, LSP)-induced AKI. A sepsis model was established by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment. The severity of the inflammatory injury was expressed as renal damage scores (RDS). Apoptosis of tubular cells was detected by Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL assay) (apoptotic DNA fragmentation, expressed as an apoptotic index, AI) and immunohistochemical staining for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL and survivin. We found that endotoxin induced severe renal inflammatory injury (RDS = 3.58 ± 0.50), whereas simvastatin dose-dependently prevented structural changes induced by LPS. Furthermore, simvastatin 40 mg/kg most profoundly attenuated tubular apoptosis, determined as a decrease of cytochrome C, caspase-3 expression, and AIs (p < 0.01 vs. LPS). Conversely, simvastatin induced a significant increase of Bcl-XL and survivin, both in the strong inverse correlations with cleaved caspase-3 and cytochrome C. Our study indicates that simvastatin has cytoprotective effects against LPS-induced tubular apoptosis, seemingly mediated by upregulation of cell-survival molecules, such as Bcl-XL and survivin, and inhibition of the mitochondrial cytochrome C and downstream caspase-3 activation.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Riñón/efectos de los fármacos , Simvastatina/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromos c/genética , Endotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Riñón/lesiones , Riñón/metabolismo , Riñón/patología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Lipopolisacáridos/toxicidad , Ratas , Proteína bcl-X/genética
14.
Toxins (Basel) ; 12(10)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33028026

RESUMEN

In this paper, the potential antidote efficacy of commercially available formulations of various feed additives such as Minazel-Plus®, Mycosorb®, and Mycofix® was considered by recording their incidence on general health, body weight, and food and water intake, as well as through histopathology and semiquantitative analysis of gastric alterations in Wistar rats treated with the T-2 toxin in a single-dose regimen of 1.67 mg/kg p.o. (1 LD50) for 4 weeks. As an organic adsorbent, Mycosorb® successfully antagonized acute lethal incidence of the T-2 toxin (protective index (PI) = 2.25; p < 0.05 vs. T-2 toxin), and had adverse effects on body weight gain as well as food and water intake during the research (p < 0.001). However, the protective efficacy of the other two food additives was significantly lower (p < 0.05). Treatment with Mycosorb® significantly reduced the severity of gastric damage, which was not the case when the other two adsorbents were used. Our results suggest that Mycosorb® is a much better adsorbent for preventing the adverse impact of the T-2 toxin as well as its toxic metabolites compared with Minazel-plus® or Mycofix-plus®, and it almost completely suppresses its acute toxic effects and cytotoxic potential on the gastric epithelial, glandular, and vascular endothelial cells.


Asunto(s)
Antídotos/farmacología , Aditivos Alimentarios/farmacología , Intoxicación/tratamiento farmacológico , Toxina T-2/envenenamiento , Adsorción , Animales , Antídotos/química , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Aditivos Alimentarios/química , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/patología , Yodóforos/farmacología , Dosificación Letal Mediana , Estructura Molecular , Intoxicación/patología , Ratas Wistar , Relación Estructura-Actividad , Factores de Tiempo
15.
Nanomaterials (Basel) ; 10(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752020

RESUMEN

Being a member of the nanofamily, carbon nanomaterials exhibit specific properties that mostly arise from their small size. They have proved to be very promising for application in the technical and biomedical field. A wide spectrum of use implies the inevitable presence of carbon nanomaterials in the environment, thus potentially endangering their whole nature. Although scientists worldwide have conducted research investigating the impact of these materials, it is evident that there are still significant gaps concerning the knowledge of their mechanisms, as well as the prolonged and chronic exposure and effects. This manuscript summarizes the most prominent representatives of carbon nanomaterial groups, giving a brief review of their general physico-chemical properties, the most common use, and toxicity profiles. Toxicity was presented through genotoxicity and the activation of the cell signaling pathways, both including in vitro and in vivo models, mechanisms, and the consequential outcomes. Moreover, the acute toxicity of fullerenol, as one of the most commonly investigated members, was briefly presented in the final part of this review. Thinking small can greatly help us improve our lives, but also obliges us to deeply and comprehensively investigate all the possible consequences that could arise from our pure-hearted scientific ambitions and work.

16.
Food Chem Toxicol ; 137: 111138, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31981685

RESUMEN

T-2 toxin, A trichothecenes mycotoxin, is immunotoxic to animals and humans. Although it is highly cardiotoxic, the pathogenesis of cardiomyopathy caused by T-2 toxin is not entirely clear. Hence, in our research, cardiomyopathy was induced by a single injection of T-2 mycotoxin (0.23 mg/kg s.c., 1 LD50) to Wistar rats. The cardiac tissue was carefully examinated by using basic histopathology, semiquantitative (tissue grading score scales) and imaging (a total number of mast cells - MCs) analyses on days 1, 7, 14, 21, 28 and 60 of the study. The most intensive myocardial alterations (cardiac damage score, CDS = 4.20-4.40), irregular glycogen distribution (glycogen distribution score, GDS = 4.07-4.17), haemorrhagic foci (vascular damage score, VDS = 4.57-4.90), diffuse accumulation and degranulation of MCs were observed on day 28 and 60 after treatment (p < 0.001 vs. control and 1st T-2-toxin-treated group, respectively). Besides, statistically significant positive correlations were obtained regarding myocardial injury, glycogen distribution and intensity of haemorrhage, and a negative correlation was found in the case of MCs. Obtained results are essential and crucial for further in vivo experimental studies, including the development of medications able to reduce T-2 toxin-induced cardiotoxicity.


Asunto(s)
Cardiomiopatías/etiología , Cardiotoxicidad/etiología , Toxina T-2/toxicidad , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Cardiotoxicidad/patología , Glucógeno/metabolismo , Masculino , Mastocitos/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Ratas Wistar
17.
J Enzyme Inhib Med Chem ; 35(1): 574-583, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31994958

RESUMEN

c-Jun N-terminal kinase (JNK) signalling regulates both cancer cell apoptosis and survival. Emerging evidence show that JNK promoted tumour progression is involved in various cancers, that include human pancreatic-, lung-, and breast cancer. The pro-survival JNK oncoprotein functions in a cell context- and cell type-specific manner to affect signal pathways that modulate tumour initiation, proliferation, and migration. JNK is therefore considered a potential oncogenic target for cancer therapy. Currently, designing effective and specific JNK inhibitors is an active area in the cancer treatment. Some ATP-competitive inhibitors of JNK, such as SP600125 and AS601245, are widely used in vitro; however, this type of inhibitor lacks specificity as they indiscriminately inhibit phosphorylation of all JNK substrates. Moreover, JNK has at least three isoforms with different functions in cancer development and identifying specific selective inhibitors is crucial for the development of targeted therapy in cancer. Some selective inhibitors of JNK are identified; however, their clinical studies in cancer are relatively less conducted. In this review, we first summarised the function of JNK signalling in cancer progression; there is a focus on the discussion of the novel selective JNK inhibitors as potential targeting therapy in cancer. Finally, we have offered a future perspective of the selective JNK inhibitors in the context of cancer therapies. We hope this review will help to further understand the role of JNK in cancer progression and provide insight into the design of novel selective JNK inhibitors in cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Transducción de Señal/efectos de los fármacos
18.
Front Plant Sci ; 11: 552969, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488637

RESUMEN

In plants, there is a complex and multilevel network of the antioxidative system (AOS) operating to counteract harmful reactive species (RS), the foremost important of which are reactive oxygen species (ROS), and maintain homeostasis within the cell. Specific AOSs for plant cells are, first and foremost, enzymes of the glutathione-ascorbate cycle (Asc-GSH), followed by phenolic compounds and lipophilic antioxidants like carotenoids and tocopherols. Evidence that plant cells have excellent antioxidative defense systems is their ability to survive at H2O2 concentrations incompatible with animal cell life. For the survival of stressed plants, it is of particular importance that AOS cooperate and participate in redox reactions, therefore, providing better protection and regeneration of the active reduced forms. Considering that plants abound in antioxidant compounds, and humans are not predisposed to synthesize the majority of them, new fields of research have emerged. Antioxidant potential of plant compounds has been exploited for anti-aging formulations preparation, food fortification and preservation but also in designing new therapies for diseases with oxidative stress implicated in etiology.

19.
Sci Rep ; 9(1): 16425, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712702

RESUMEN

Certain AChE reactivators, asoxime, obidoxime, K027, K048, and K075, when taken in overdoses and sometimes even when introduced within therapeutic ranges, may injure the different organs. As a continuation of previously published data, in this study, Wistar rats have sacrificed 24 hrs and 7 days after single im application of 0.1LD50, 0.5LD50 and 1.0LD50 of each reactivator, and examinated tissue samples were obtained for pathohistological and semiquantitative analysis. A severity of tissue alteration, expressed as different tissue damage scores were evaluated. Morphological structure of examinated tissues treated with of 0.1LD50 of all reactivators was comparable with the control group of rats. Moderate injuries were seen in visceral tissues treated with 0.5LD50 of asoxime, obidoxime and K027. Acute damages were enlarged after treatment with 0.5LD50 and 1.0LD50 of all reactivators during the next 7 days. The most prominent changes were seen in rats treated with 1.0LD50 of K048 and K075 (P < 0.001 vs. control and asoxime-treated group). All reactivators given by a single, high, unitary dose regimen, have an adverse effect not only on the main visceral tissue, but on the whole rat as well, but the exact mechanism of cellular injury remains to be confirmed in further investigation.


Asunto(s)
Oximas/efectos adversos , Vísceras/efectos de los fármacos , Vísceras/patología , Animales , Biopsia , Sustancias para la Guerra Química/efectos adversos , Sustancias para la Guerra Química/química , Sustancias para la Guerra Química/toxicidad , Relación Dosis-Respuesta a Droga , Histocitoquímica , Dosificación Letal Mediana , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Estructura Molecular , Especificidad de Órganos , Oximas/administración & dosificación , Oximas/química , Oximas/toxicidad , Ratas , Estómago/efectos de los fármacos , Estómago/patología
20.
Environ Toxicol Pharmacol ; 71: 103221, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31365892

RESUMEN

Our aim was to compare the protective efficacy of two different formulations of methylprednisolone in T-2 toxin-induced cardiomyopathy. Methylprednisolone (soluble form, Lemod-solu® and/or depot form, Lemod-depo®, a total single dose of 40 mg/kg im) was given immediately after T-2 toxin (1 LD50 0.23 mg/kg sc). The myocardial tissue samples were examinated by using histopathology, semiquantitative and imaging analyses on day 1, 7, 14, 21, 28 and 60 of the study. Therapeutic application of Lemod-solu® significantly decreased the intensity of myocardial degeneration and haemorrhages, distribution of glycogen granules in the endo- and perimysium, a total number of mast cells and the degree of their degranulation was in correlation with the reversible heart structural lesions (p <  0.01 vs. T-2 toxin). These changes were completely abolished by the therapeutic use of Lemod-solu® plus Lemod-depo® (p <  0.001 vs. T-2 toxin). Our results show that a significant cardioprotective efficacy of methylprednisolone is mediated by its anti-inflammatory activity.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cardiomiopatías/tratamiento farmacológico , Metilprednisolona/uso terapéutico , Miocardio/patología , Toxina T-2/toxicidad , Animales , Antiinflamatorios/administración & dosificación , Cardiomiopatías/inducido químicamente , Preparaciones de Acción Retardada , Relación Dosis-Respuesta a Droga , Glucógeno/metabolismo , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Mastocitos/patología , Metilprednisolona/administración & dosificación , Miocardio/metabolismo , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA