Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2218959120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626555

RESUMEN

Transcription factors (TFs) control numerous genes that are directly relevant to many human disorders. However, developing specific reagents targeting TFs within intact cells is challenging due to the presence of highly disordered regions within these proteins. Intracellular antibodies offer opportunities to probe protein function and validate therapeutic targets. Here, we describe the optimization of nanobodies specific for BCL11A, a validated target for the treatment of hemoglobin disorders. We obtained first-generation nanobodies directed to a region of BCL11A comprising zinc fingers 4 to 6 (ZF456) from a synthetic yeast surface display library, and employed error-prone mutagenesis, structural determination, and molecular modeling to enhance binding affinity. Engineered nanobodies recognized ZF6 and mediated targeted protein degradation (TPD) of BCL11A protein in erythroid cells, leading to the anticipated reactivation of fetal hemoglobin (HbF) expression. Evolved nanobodies distinguished BCL11A from its close paralog BCL11B, which shares an identical DNA-binding specificity. Given the ease of manipulation of nanobodies and their exquisite specificity, nanobody-mediated TPD of TFs should be suitable for dissecting regulatory relationships of TFs and gene targets and validating therapeutic potential of proteins of interest.


Asunto(s)
Anticuerpos de Dominio Único , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hemoglobina Fetal/metabolismo
2.
ACS Cent Sci ; 8(12): 1695-1703, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36589886

RESUMEN

Proximity-based strategies to degrade proteins have enormous therapeutic potential in medicine, but the technologies are limited to proteins for which small molecule ligands exist. The identification of such ligands for therapeutically relevant but "undruggable" proteins remains challenging. Herein, we employed yeast surface display of synthetic nanobodies to identify a protein ligand selective for BCL11A, a critical repressor of fetal globin gene transcription. Fusion of the nanobody to a cell-permeant miniature protein and an E3 adaptor creates a degrader that depletes cellular BCL11A in differentiated primary erythroid precursor cells, thereby inducing the expression of fetal hemoglobin, a modifier of clinical severity of sickle cell disease and ß-thalassemia. Our strategy provides a means of fetal hemoglobin induction through reversible, temporal modulation of BCL11A. Additionally, it establishes a new paradigm for the targeted degradation of previously intractable proteins.

3.
Skelet Muscle ; 9(1): 26, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31666122

RESUMEN

BACKGROUND: Skeletal muscle mass and strength are crucial determinants of health. Muscle mass loss is associated with weakness, fatigue, and insulin resistance. In fact, it is predicted that controlling muscle atrophy can reduce morbidity and mortality associated with diseases such as cancer cachexia and sarcopenia. METHODS: We analyzed gene expression data from muscle of mice or human patients with diverse muscle pathologies and identified LMCD1 as a gene strongly associated with skeletal muscle function. We transiently expressed or silenced LMCD1 in mouse gastrocnemius muscle or in mouse primary muscle cells and determined muscle/cell size, targeted gene expression, kinase activity with kinase arrays, protein immunoblotting, and protein synthesis levels. To evaluate force, calcium handling, and fatigue, we transduced the flexor digitorum brevis muscle with a LMCD1-expressing adenovirus and measured specific force and sarcoplasmic reticulum Ca2+ release in individual fibers. Finally, to explore the relationship between LMCD1 and calcineurin, we ectopically expressed Lmcd1 in the gastrocnemius muscle and treated those mice with cyclosporine A (calcineurin inhibitor). In addition, we used a luciferase reporter construct containing the myoregulin gene promoter to confirm the role of a LMCD1-calcineurin-myoregulin axis in skeletal muscle mass control and calcium handling. RESULTS: Here, we identify LIM and cysteine-rich domains 1 (LMCD1) as a positive regulator of muscle mass, that increases muscle protein synthesis and fiber size. LMCD1 expression in vivo was sufficient to increase specific force with lower requirement for calcium handling and to reduce muscle fatigue. Conversely, silencing LMCD1 expression impairs calcium handling and force, and induces muscle fatigue without overt atrophy. The actions of LMCD1 were dependent on calcineurin, as its inhibition using cyclosporine A reverted the observed hypertrophic phenotype. Finally, we determined that LMCD1 represses the expression of myoregulin, a known negative regulator of muscle performance. Interestingly, we observed that skeletal muscle LMCD1 expression is reduced in patients with skeletal muscle disease. CONCLUSIONS: Our gain- and loss-of-function studies show that LMCD1 controls protein synthesis, muscle fiber size, specific force, Ca2+ handling, and fatigue resistance. This work uncovers a novel role for LMCD1 in the regulation of skeletal muscle mass and function with potential therapeutic implications.


Asunto(s)
Proteínas Co-Represoras/genética , Proteínas Co-Represoras/fisiología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/fisiología , Músculo Esquelético/fisiología , Animales , Calcineurina/fisiología , Inhibidores de la Calcineurina/farmacología , Calcio/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Hipertrofia/genética , Hipertrofia/patología , Hipertrofia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Fuerza Muscular/genética , Fuerza Muscular/fisiología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
4.
Nat Commun ; 10(1): 2767, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235694

RESUMEN

The coactivator PGC-1α1 is activated by exercise training in skeletal muscle and promotes fatigue-resistance. In exercised muscle, PGC-1α1 enhances the expression of kynurenine aminotransferases (Kats), which convert kynurenine into kynurenic acid. This reduces kynurenine-associated neurotoxicity and generates glutamate as a byproduct. Here, we show that PGC-1α1 elevates aspartate and glutamate levels and increases the expression of glycolysis and malate-aspartate shuttle (MAS) genes. These interconnected processes improve energy utilization and transfer fuel-derived electrons to mitochondrial respiration. This PGC-1α1-dependent mechanism allows trained muscle to use kynurenine metabolism to increase the bioenergetic efficiency of glucose oxidation. Kat inhibition with carbidopa impairs aspartate biosynthesis, mitochondrial respiration, and reduces exercise performance and muscle force in mice. Our findings show that PGC-1α1 activates the MAS in skeletal muscle, supported by kynurenine catabolism, as part of the adaptations to endurance exercise. This crosstalk between kynurenine metabolism and the MAS may have important physiological and clinical implications.


Asunto(s)
Metabolismo Energético/fisiología , Fatiga/fisiopatología , Quinurenina/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Adaptación Fisiológica , Animales , Aspartato Aminotransferasas/metabolismo , Ácido Aspártico/metabolismo , Carbidopa/farmacología , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/fisiología , Metabolismo Energético/efectos de los fármacos , Glucólisis/fisiología , Malatos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Animales , Músculo Esquelético/fisiopatología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Condicionamiento Físico Animal/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transaminasas/antagonistas & inhibidores , Transaminasas/metabolismo
5.
Cell Metab ; 27(2): 378-392.e5, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29414686

RESUMEN

The role of tryptophan-kynurenine metabolism in psychiatric disease is well established, but remains less explored in peripheral tissues. Exercise training activates kynurenine biotransformation in skeletal muscle, which protects from neuroinflammation and leads to peripheral kynurenic acid accumulation. Here we show that kynurenic acid increases energy utilization by activating G protein-coupled receptor Gpr35, which stimulates lipid metabolism, thermogenic, and anti-inflammatory gene expression in adipose tissue. This suppresses weight gain in animals fed a high-fat diet and improves glucose tolerance. Kynurenic acid and Gpr35 enhance Pgc-1α1 expression and cellular respiration, and increase the levels of Rgs14 in adipocytes, which leads to enhanced beta-adrenergic receptor signaling. Conversely, genetic deletion of Gpr35 causes progressive weight gain and glucose intolerance, and sensitizes to the effects of high-fat diets. Finally, exercise-induced adipose tissue browning is compromised in Gpr35 knockout animals. This work uncovers kynurenine metabolism as a pathway with therapeutic potential to control energy homeostasis.


Asunto(s)
Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Metabolismo Energético , Homeostasis , Inflamación/metabolismo , Inflamación/patología , Ácido Quinurénico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Animales , Peso Corporal/efectos de los fármacos , Células Cultivadas , Dieta Alta en Grasa , Epidídimo/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Linfocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Proteínas RGS/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Grasa Subcutánea/metabolismo , Transcripción Genética
6.
J Biol Chem ; 291(29): 15169-84, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27231350

RESUMEN

Endurance and resistance exercise training induces specific and profound changes in the skeletal muscle transcriptome. Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) coactivators are not only among the genes differentially induced by distinct training methods, but they also participate in the ensuing signaling cascades that allow skeletal muscle to adapt to each type of exercise. Although endurance training preferentially induces PGC-1α1 expression, resistance exercise activates the expression of PGC-1α2, -α3, and -α4. These three alternative PGC-1α isoforms lack the arginine/serine-rich (RS) and RNA recognition motifs characteristic of PGC-1α1. Discrete functions for PGC-1α1 and -α4 have been described, but the biological role of PGC-1α2 and -α3 remains elusive. Here we show that different PGC-1α variants can affect target gene splicing through diverse mechanisms, including alternative promoter usage. By analyzing the exon structure of the target transcripts for each PGC-1α isoform, we were able to identify a large number of previously unknown PGC-1α2 and -α3 target genes and pathways in skeletal muscle. In particular, PGC-1α2 seems to mediate a decrease in the levels of cholesterol synthesis genes. Our results suggest that the conservation of the N-terminal activation and repression domains (and not the RS/RNA recognition motif) is what determines the gene programs and splicing options modulated by each PGC-1α isoform. By using skeletal muscle-specific transgenic mice for PGC-1α1 and -α4, we could validate, in vivo, splicing events observed in in vitro studies. These results show that alternative PGC-1α variants can affect target gene expression both quantitatively and qualitatively and identify novel biological pathways under the control of this system of coactivators.


Asunto(s)
Empalme Alternativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Células Cultivadas , Secuencia Conservada , Exones , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Ratones Transgénicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/química , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Receptores de Esteroides/química , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
7.
Cell ; 159(1): 33-45, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25259918

RESUMEN

Depression is a debilitating condition with a profound impact on quality of life for millions of people worldwide. Physical exercise is used as a treatment strategy for many patients, but the mechanisms that underlie its beneficial effects remain unknown. Here, we describe a mechanism by which skeletal muscle PGC-1α1 induced by exercise training changes kynurenine metabolism and protects from stress-induced depression. Activation of the PGC-1α1-PPARα/δ pathway increases skeletal muscle expression of kynurenine aminotransferases, thus enhancing the conversion of kynurenine into kynurenic acid, a metabolite unable to cross the blood-brain barrier. Reducing plasma kynurenine protects the brain from stress-induced changes associated with depression and renders skeletal muscle-specific PGC-1α1 transgenic mice resistant to depression induced by chronic mild stress or direct kynurenine administration. This study opens therapeutic avenues for the treatment of depression by targeting the PGC-1α1-PPAR axis in skeletal muscle, without the need to cross the blood-brain barrier.


Asunto(s)
Depresión/prevención & control , Quinurenina/metabolismo , Músculo Esquelético/enzimología , Estrés Psicológico/complicaciones , Factores de Transcripción/metabolismo , Animales , Barrera Hematoencefálica , Depresión/metabolismo , Perfilación de la Expresión Génica , Humanos , Ácido Quinurénico , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Condicionamiento Físico Animal , Acondicionamiento Físico Humano , Transaminasas/metabolismo , Factores de Transcripción/genética
8.
PLoS Genet ; 9(10): e1003858, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146628

RESUMEN

During spermatogenesis, mRNA localization and translation are believed to be regulated in a stage-specific manner. We report here that the Protamine2 (Prm2) mRNA transits through chromatoid bodies of round spermatids and localizes to cytosol of elongating spermatids for translation. The transacting factor CBF-A, also termed Hnrnpab, contributes to temporal regulation of Prm2 translation. We found that CBF-A co-localizes with the Prm2 mRNA during spermatogenesis, directly binding to the A2RE/RTS element in the 3' UTR. Although both p37 and p42 CBF-A isoforms interacted with RTS, they associated with translationally repressed and de-repressed Prm2 mRNA, respectively. Only p42 was found to interact with the 5'cap complex, and to co-sediment with the Prm2 mRNA in polysomes. In CBF-A knockout mice, expression of protamine 2 (PRM2) was reduced and the Prm2 mRNA was prematurely translated in a subset of elongating spermatids. Moreover, a high percentage of sperm from the CBF-A knockout mouse showed abnormal DNA morphology. We suggest that CBF-A plays an important role in spermatogenesis by regulating stage-specific translation of testicular mRNAs.


Asunto(s)
Factor de Unión a CCAAT/genética , Protaminas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Espermatogénesis/genética , Animales , Factor de Unión a CCAAT/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Polirribosomas , Protaminas/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Testículo/metabolismo
9.
Avicenna J Med Biotechnol ; 1(1): 33-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23407141

RESUMEN

The green fluorescent protein (GFP) was originally isolated from the Jellyfish Aequorea Victoria that fluoresces green when exposed to blue light. GFP protein is composed of 238 amino acids with the molecular mass of 26.9 kD. The GFP gene is frequently used in cellular and molecular biology as a reporter gene. To date, many bacterial, yeast, fungal, plants, fly and mammalian cells, including human, have been created which express GFP. Martin Chalfie, Osamu Shimomura, and Roger Tsien were awarded the 2008 noble prize in chemistry for their discovery and development of GFP. In many studies on mammalian cells, GFP gene is introduced into cells using vector-based systems or a recombinant virus to track the location of a target protein or to study the expression level of the gene of interest, but in these studies there is no selection marker to normalize transfection. According to the importance of neomycin gene as a selection marker in mammalian cells, we aimed to produce a GFP expression vector that contains neomycin gene. GFP gene was separated from pEGFP-N1 vector and was inserted in the back-bone of pCDNA3.1/His/LacZ vector that contained the neomycin gene. The resulted vector contained GFP beside neomycin gene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA