Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(18): 15404-15410, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35571830

RESUMEN

The effect of polyvalent cations, like spermine, on the condensation of DNA into very well-defined toroidal shapes has been well studied and understood. A great effort has been made to obtain similar condensed structures from RNA molecules, but so far, it has been elusive. In this work, we show that single-stranded RNA (ssRNA) molecules can easily be condensed into nanoring and globular structures on a mica surface, where each nanoring structure is formed mostly by a single RNA molecule. The condensation occurs in a concentration range of different cations, from monovalent to trivalent, but at a higher concentration, globular structures appear. RNA nanoring structures were observed on mica surfaces by atomic force microscopy (AFM). The samples were observed in tapping mode and were prepared by drop evaporation of a solution of RNA in the presence of one type of the different cations used. As far as we know, this is the first time that nanorings or any other well-defined condensed RNA structures have been reported in the presence of simple salts. The RNA nanoring formation can be understood by an energy competition between the hydrogen bonding forming hairpin stems-weakened by the salts-and the hairpin loops. This result may have an important biological relevance since it has been proposed that RNA is the oldest genome-coding molecule, and the formation of these structures could have given it stability against degradation in primeval times. Even more, the nanoring structures could have the potential to be used as biosensors and functionalized nanodevices.

2.
J Phys Chem B ; 110(44): 22230-6, 2006 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17078663

RESUMEN

The phase diagram of a two-dimensional model system for colloidal particles at the air-water interface was determined using Monte Carlo computer simulations in the isothermic-isobaric ensemble. The micrometer-range binary colloidal interaction has been modeled by hard disklike particles interacting via a secondary minimum followed by a weaker longer-range repulsive maximum, both of the order of kBT. The repulsive part of the potential drives the clustering of particles at low densities and low temperatures. Pinned voids are formed at higher densities and intermediate values of the surface pressure. The analysis of isotherms, translational and orientational correlation functions as well as structure factor gives clear evidence of the presence of a melting first-order transition. However, the melting process can be also followed by a metastable route through a hexatic phase at low surface pressures and low temperatures, before crystalization occurs at higher surface pressure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA