Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Biol Chem ; 112: 108159, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181099

RESUMEN

In the present work, we describe the synthesis of new 1,3,4-thiadiazole derivatives from natural (R)-carvone in three steps including, dichloro-cyclopropanation, a condensation with thiosemicarbazide and then a 1,3-dipolar cycloaddition reaction with various nitrilimines. the targeted compounds were structurally identified by 1H & 13C NMR and HRMS analyses. The cytotoxic assay demonstrated that some synthesized novel compounds were potent on certain cancer cell lines. Molecular modeling studies were undertaken to rationalize the wet lab study results. Furthermore, molecular docking was performed to unveil the binding potential of the most active derivatives, 3a and 6c, to caspase-3 and COX-2. The stabilities of the protein-compound complexes obtained from the docking were evaluated using MD simulation. Furthermore, FMO and related parameters of the active compounds and their stereoisomers were examined through DFT studies. The docking study showed compound 6c had a higher binding potential than caspase-3. However, the binding strength of 6c was found to be less than that of the standard drug, doxorubicin, as it formed lower conventional hydrogen bonds. On the other hand, compound 3a had a higher binding potential to COX-2. However, the binding potential 3a was much lower than that of the standard COX-2 inhibitor, celecoxib. The MD simulation demonstrated that the caspase-3-6c complex was less stable than the caspase-3-doxorubicin complex. In contrast, the COX-2-3a complex was stable, and 3a was anticipated to remain inside the protein's binding pocket. The DFT study showed that 3a had higher chemical stability than 6c. The electron exchange capacity, chemical stability, and molecular orbital distributions of the stereoisomers of the active compounds were also found to be alike.


Asunto(s)
Antineoplásicos , Monoterpenos Ciclohexánicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Tiadiazoles , Humanos , Tiadiazoles/química , Tiadiazoles/farmacología , Tiadiazoles/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Estereoisomerismo , Monoterpenos Ciclohexánicos/química , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/química , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Caspasa 3/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Teoría Funcional de la Densidad , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA