Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 76: 103308, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39167912

RESUMEN

In rats decreased bioavailability of nitric oxide induces oxidative stress and right heart failure. Oxidative stress can activate matrix metalloproteinase-2 (MMP2). We addressed the question whether increasing oxidative defense by administration of the SOD mimetic Tempol or direct inhibition of MMP2 activity by SB-3CT mitigates right heart failure. Rats received l-NAME for four weeks and during week three and four treatment groups received either Tempol or SB-3CT in addition. After four weeks heart function was analyzed by echocardiography, organ weights and expression of NPPB and COL1A1 were analyzed, oxidative stress was monitored by DHE-staining and MMP2 activity was quantified by proteolytic auto-activation, zymography, and troponin I degradation. l-NAME induced oxidative stress and MMP2 activity stronger in the right ventricle than in the left ventricle. Troponin I, a MMP2 substrate, was degraded in right ventricles. Tempol reduced oxidative stress and preferentially affected the expression of fibrotic genes (i.e. COL1A1) and fibrosis. Tempol and SB-3CT mitigated right but not left ventricular hypertrophy. Neither SB-3CT nor Tempol alone strongly improved right ventricular function. In conclusion, both MMP2 activity and oxidative stress contribute to right ventricular failure but neither is MMP2 activation linked to oxidative stress nor does oxidative stress and MMP2 activity have common targets.

2.
Br J Pharmacol ; 181(3): 345-361, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37828636

RESUMEN

BACKGROUND AND PURPOSE: To protect against SARS-CoV-2 infection, the first mRNA-based vaccines, Spikevax (mRNA-1273, Moderna) and Comirnaty (BNT162b2, Pfizer/Biontech), were approved in 2020. The structure and assembly of the immunogen-in both cases, the SARS-CoV-2 spike (S) glycoprotein-are determined by a messenger RNA sequence that is translated by endogenous ribosomes. Cardiac side-effects, which for the most part can be classified by their clinical symptoms as myo- and/or pericarditis, can be caused by both mRNA-1273 and BNT162b2. EXPERIMENTAL APPROACH: As persuasive theories for the underlying pathomechanisms have yet to be developed, this study investigated the effect of mRNA-1273 and BNT162b2 on the function, structure, and viability of isolated adult rat cardiomyocytes over a 72 h period. KEY RESULTS: In the first 24 h after application, both mRNA-1273 and BNT162b2 caused neither functional disturbances nor morphological abnormalities. After 48 h, expression of the encoded spike protein was detected in ventricular cardiomyocytes for both mRNAs. At this point in time, mRNA-1273 induced arrhythmic as well as completely irregular contractions associated with irregular as well as localized calcium transients, which provide indications of significant dysfunction of the cardiac ryanodine receptor (RyR2). In contrast, BNT162b2 increased cardiomyocyte contraction via significantly increased protein kinase A (PKA) activity at the cellular level. CONCLUSION AND IMPLICATIONS: Here, we demonstrated for the first time, that in isolated cardiomyocytes, both mRNA-1273 and BNT162b2 induce specific dysfunctions that correlate pathophysiologically to cardiomyopathy. Both RyR2 impairment and sustained PKA activation may significantly increase the risk of acute cardiac events.


Asunto(s)
COVID-19 , Miocitos Cardíacos , Animales , Humanos , Ratas , Vacunas contra la COVID-19/efectos adversos , Vacuna BNT162 , Vacuna nCoV-2019 mRNA-1273 , ARN , Canal Liberador de Calcio Receptor de Rianodina/genética , COVID-19/prevención & control , SARS-CoV-2 , Cardiotoxicidad , ARN Mensajero
3.
Biomolecules ; 13(6)2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37371593

RESUMEN

Serotonin effects on cardiac hypertrophy, senescence, and failure are dependent either on activation of specific receptors or serotonin uptake and serotonin degradation by monoamine oxidases (MAOs). Receptor-dependent effects are specific for serotonin, but MAO-dependent effects are nonspecific as MAOs also metabolize other substrates such as catecholamines. Our study evaluates the role of MAO-A in serotonin- and norepinephrine-dependent cell damage. Experiments were performed in vivo to study the regulation of MAOA and MAOB expression and in vitro on isolated cultured adult rat ventricular cardiomyocytes (cultured for 24 h) to study the function of MAO-A. MAOA but not MAOB expression increased in maladaptive hypertrophic stages. Serotonin and norepinephrine induced morphologic cell damage (loss of rod-shaped cell structure). However, MAO-A inhibition suppressed serotonin-dependent but not norepinephrine-dependent damages. Serotonin but not norepinephrine caused a reduction in cell shortening in nondamaged cells. Serotonin induced mitochondria-dependent oxidative stress. In vivo, MAOA was induced during aging and hypertension but the expression of the corresponding serotonin uptake receptor (SLC6A4) was reduced and enzymes that reduce either oxidative stress (CAT) or accumulation of 5-hydroxyindolacetaldehyde (ALDH2) were induced. In summary, the data show that MAO-A potentially affects cardiomyocytes' function but that serotonin is not necessarily the native substrate.


Asunto(s)
Miocitos Cardíacos , Serotonina , Ratas , Animales , Miocitos Cardíacos/metabolismo , Serotonina/farmacología , Serotonina/metabolismo , Norepinefrina/farmacología , Norepinefrina/metabolismo , Monoaminooxidasa/metabolismo , Cardiomegalia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA