Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Histochem ; 122(3): 151515, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32081447

RESUMEN

Most mammalian species have a vomeronasal organ that detects specific chemical substances, such as pheromones. Mucous fluid covering the vomeronasal sensory epithelium is secreted by vomeronasal glands, and the properties of these fluids have been suggested to be involved in chemical detection. Histological studies using periodic acid-Schiff (PAS) and Alcian blue pH 2.5 (AB) stains, which respectively detect natural and acidic polysaccharides, have suggested variations in the nature of the vomeronasal glands among species. Here, we investigated the responsivity of the vomeronasal glands to PAS and AB stains in eight Laurasiatheria species. All species studied herein possessed vomeronasal glands that stained positive for PAS, like other many reported species. The vomeronasal glands of dogs and minks - like rodents, were AB-negative, whereas those of cows, goats, sika deer, musk shrews and two bat species were positive. Considering the present findings and previous reports, the vomeronasal glands in most of Laurasiatheria species appear to be fundamentally abundant in acidic polysaccharides, whereas those in carnivores essentially contains neutral polysaccharides.


Asunto(s)
Mamíferos/metabolismo , Polisacáridos/metabolismo , Órgano Vomeronasal/metabolismo , Azul Alcián , Animales , Bovinos , Quirópteros , Ciervos , Perros , Ratones Endogámicos ICR , Visón , Bulbo Olfatorio , Reacción del Ácido Peryódico de Schiff , Polisacáridos/química , Musarañas
2.
Chem Senses ; 44(7): 427-434, 2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31155674

RESUMEN

The morphological and histological features of the nasal cavity are diverse among animal species, and the nasal cavities of terrestrial and semiaquatic turtles possess 2 regions lined with each different type of sensory epithelium. Sea turtles can inhale both of volatile and water-soluble odorants with high sensitivity, but details of the architectural features and the distribution of the sensory epithelia within the sea turtle nasal cavity remain uncertain. The present study analyzed the nasal cavity of green sea turtles using morphological, computed tomographic, and histological methods. We found that the middle region of the sea turtle nasal cavity is divided into anterodorsal, anteroventral, and posterodorsal diverticula and a posteroventral excavation by connective tissue containing cartilages. The posterodorsal diverticulum was lined with a thin sensory epithelium, and the anterodorsal and anteroventral diverticula were occupied by a single thick sensory epithelium. In addition, a relatively small area on the posteroventral excavation was covered by independent sensory epithelium that differed from other 2 types of epithelia, and a single thin bundle derived from the posteroventral excavation comprised the most medial nerve that joins the anterior end of the olfactory nerve tract. These findings suggested that the posteroventral excavation identified herein transfers stimuli through an independent circuit and plays different roles when odorants arise from other nasal regions.


Asunto(s)
Epitelio/fisiología , Cavidad Nasal/fisiología , Mucosa Nasal/fisiología , Animales , Odorantes/análisis , Tortugas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA