Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Eng Lett ; 14(3): 537-548, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38645584

RESUMEN

Wound healing is a complex biological process crucial for restoring tissue integrity and preventing infections. The development of advanced materials that facilitate and expedite the wound-healing process has been a focal point in biomedical research. In this study, we aimed to enhance the wound-healing potential of hydrogel scaffolds by incorporating graphene oxide and poly (ethylene glycol) methyl ether methacrylate (MEO2MA). Various masses of graphene oxide were added to MEO2MA hydrogels via free radical polymerisation. Comprehensive characterizations, encompassing mechanical properties, and biocompatibility assays, were conducted to evaluate the hydrogels' suitability for wound healing. In vitro experiments demonstrated that the graphene oxide-based hydrogels exhibited a proper swelling degree and tensile strength, responding effectively to moisture conditions and adhesiveness for wound healing. Notably, the tensile strength significantly increased to 626 kPa in the graphene oxide hydrogels. Biocompatibility assessments revealed that the graphene oxide/MEO2MA hydrogels were non-toxic to human dermal fibroblast cell growth, with no significant difference in cell viability observed in the graphene oxide/MEO2MA hydrogel (H-HG) group. In a rat skin experiment, the wound-healing rate of the hydrogel incorporating graphene oxide surpassed that of the pristine hydrogel after a 15-day treatment, achieving over 95% wound closure in the H-HG group. The histopathological analysis further supported the efficacy of the H-HG hydrogel dressing in promoting more effective tissue regeneration. These results collectively highlight the potential of the graphene oxide/MEO2MA hydrogel scaffold as a promising dressing for medical applications.

2.
Nanomaterials (Basel) ; 10(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708288

RESUMEN

A thermally activated shape memory polymer based on the mixture of polycaprolactone (PCL) and polydimethylsiloxane (PDMS) was fabricated into the nanofibre mesh using the electrospinning process. The added percentages of the PDMS segment in the PCL-based polymer influenced the mechanical properties. Polycaprolactone serves as a switching segment to adjust the melting temperature of the shape memory electro-spun PCL-PDMS scaffolds to our body temperature at around 37 °C. Three electro-spun PCL-PDMS copolymer nanofibre samples, including PCL6-PDMS4, PCL7-PDMS3 and PCL8-PDMS2, were characterised to study the thermal and mechanical properties along with the shape memory responses. The results from the experiment showed that the PCL switching segment ratio determines the crystallinity of the copolymer nanofibres, where a higher PCL ratio results in a higher degree of crystallinity. In contrast, the results showed that the mechanical properties of the copolymer samples decreased with the PCL composition ratio. After five thermomechanical cycles, the fabricated copolymer nanofibres exhibited excellent shape memory properties with 98% shape fixity and above 100% recovery ratio. Moreover, biological experiments were applied to evaluate the biocompatibility of the fabricated PCL-PDMS nanofibre mesh. Owing to the thermally activated shape memory performance, the electro-spun PCL-PDMS fibrous mesh has a high potential for biomedical applications such as medical shrinkable tubing and wire.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA