Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 253(Pt 8): 127118, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37802434

RESUMEN

Superabsorbent hydrogels (SAHs) are essential in various applications, including hygienic products like adult incontinence pads. However, synthetic-based super absorbent polymers (SAPs) dominate the market despite being non-biodegradable. Alternatively, bio-based hydrogels, such as sodium alginate (SA)-based hydrogels, offer biodegradable alternatives. In this study, we aimed to enhance the practical applied properties of SA-based hydrogels by grafting SA with acrylic acid (AA) and incorporating cellulose nanocrystals (CNCs). Specifically, we investigated the potential of interpenetrating network (IPN) and semi-interpenetrating network (S-IPN) hydrogels as absorbent materials in adult incontinence pads. The fabricated SAHs were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). They were also evaluated for absorption and rheological properties. The results showed that in IPN/SAHs, the addition of CNCs decreased pore sizes, while in S-IPN/SAHs, CNC incorporation increased pore sizes. The S-IPN/SAHs exhibited a significantly higher free swelling capacity (FSC) with CNCs loading, reaching 142.29 g/g in 0.9 % NaCl solution and 817.4 g/g in distilled water. On the other hand, IPN/SAHs showed a higher storage modulus and lower loss modulus compared to S-IPN/SAHs. Notably, the superior samples from this study showed a 33 % reduction in SAP consumption compared to commercial SAPs, making them more cost-effective for adult incontinence pad manufacturers. Overall, our research demonstrates the potential of interpenetrating and semi-interpenetrating network superabsorbent hydrogels as high-performance absorbent materials. The results offer improved absorbency and cost savings for producers of adult incontinence pads, and bio-based hydrogels like SA-based hydrogels are promising biodegradable alternatives to synthetic-based SAPs.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Alginatos/química , Pañales para la Incontinencia , Hidrogeles/química , Espectroscopía Infrarroja por Transformada de Fourier , Polímeros/química
2.
Int J Biol Macromol ; 246: 125721, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37419257

RESUMEN

Today, one of the world's critical environmental issues is air pollution, which is the most important parameter threatening human health and the environment. Synthetic polymers are widely used in industrial air filter production; however, they are incompatible with the environment due to their secondary pollution. Using renewable materials to manufacture air filters is not only environmentally friendly but also essential. Recently, a new generation of biopolymers called cellulose nanofiber (CNF)-based hydrogels have been proposed, with three dimensional (3D) nanofiber networks and unique physical and mechanical properties. CNFs have become a hot research topic for application as air filter materials because they can compete with synthetic nanofibers due to their advantages, such as abundant, renewable, nontoxic, high specific surface area, high reactivity, flexibility, low cost, low density, and network structure formation. The main focus of the current review is the recent progress in the preparation and employment of nanocellulose materials, especially CNF-based hydrogels, to absorb PM and CO2. This study summarizes the preparation methods, modification strategies, fabrications, and further applications of CNF-based aerogels as air filters. Lastly, challenges in the fabrication of CNFs, and trends for future developments are presented.


Asunto(s)
Filtros de Aire , Nanofibras , Humanos , Hidrogeles/química , Nanofibras/química , Celulosa/química , Polímeros
3.
J Funct Biomater ; 13(4)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36547534

RESUMEN

The aim of this study was to investigate the effect of different types of nanocellulose, i.e., cellulose nanocrystal (CNC), cellulose nanofiber (CNF) and bacterial nanocellulose (BNC), and also different drying methods (oven-drying and freeze-drying) on the properties of acrylic acid (AA)/sodium alginate (SA) super absorbent polymers (SAPs). In addition, the presence of ammonium per sulfate as an initiator and N-N methylene-bis-acrylamide as a cross-linker were considered. Synthesized SAPs were characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The absorption and rheological properties (i.e., storage modulus and loss modulus) were also investigated. The results of FTIR spectroscopy demonstrated several types of interactions, such as hydrogen and esterification, between SA, AA and nanocellulose. SEM analysis revealed a microporous structure in the SAPs. All SAPs had a centrifuge retention capacity (CRC)/free swelling capacity (FSC) ≥ 69%. The absorption behavior showed that the oven-dried SAPs had superior (about 2×) CRC and FRC in different aqueous media compared to the freeze-dried counterparts. The freeze-dried SAPs showed increased rheological properties in comparison to the oven-dried ones, with SAPs containing BNC and CNC having the highest rheological properties, respectively. Overall, it can be concluded that oven-dried SAPs containing CNC had better absorption properties than the other ones tested in this study.

4.
Molecules ; 27(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35956974

RESUMEN

In this study, for the first time, a composite fluff pulp was produced based on the combination of softwood (i.e., long-length fiber), hardwood (i.e., short-length fiber), non-wooden pulps (i.e., bagasse) and bentonite, with specific amounts to be used in hygienic pads (e.g., baby diapers and sanitary napkins). After the defibration process, the manufactured fluff pulp was placed as an absorbent mass in diapers and sanitary napkins. Therefore, tests related to the fluff pulp, such as grammage, thickness, density, ash content, humidity percentage, pH and brightness, tests related to the manufactured baby diapers, such as absorption capacity, retention rate, retention capacity, absorption time and rewet, and tests related to the sanitary napkin, such as absorption capacity and rewet, were performed according to the related standards. The results demonstrated that increasing the amount of bagasse pulp led to increasing the ash content, pH and density of fluff pulp and decreasing the brightness. The addition of bentonite as a filler also increased ash content and pH of fluff pulp. The results also demonstrated that increasing of bagasse pulp up to 30% in combination with softwood pulp led to increasing absorption capacity, retention rate, retention capacity, absorption time and rewet of baby diapers and of sanitary napkins.


Asunto(s)
Bentonita , Piel , Humanos , Industrias , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA