Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Mater ; 36(36): e2403477, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39049795

RESUMEN

DNA nanotechnology has revolutionized the ability to position matter at the nanoscale, but the preparation of DNA-based architectures remains laborious. To facilitate the formation of custom structures, a fully automated method is reported to produce sequence- and size-defined DNA nanotubes. By programming the sequential addition of desired building blocks, rigid DX-tile-based DNA nanotubes and flexible wireframe DNA structures are attained, where the total number of possible constructs increases as a power function of the number of different units available. Using single-molecule fluorescence imaging, the kinetics and yield of each synthetic step can be quantitatively determined, revealing differences in self-assembly dynamics as the nanotube is built up from the solid support and providing new insights into DNA self-assembly. The exploitation of automation for both assembly and analysis (through an ad-hoc developed K-means clustering algorithm) facilitates a workflow wherein the synthesis parameters may be iteratively improved upon, demonstrating how a single-molecule "assembly-analysis-optimization" sequence can be used to generate complex, noncovalent materials in good yield. The presented synthetic strategy is generalizable, making use of equipment already available in most standard laboratories and represents the first fully automated supramolecular assembly on a solid support.


Asunto(s)
Automatización , ADN , ADN/química , Nanotubos/química , Nanotecnología/métodos , Nanoestructuras/química
2.
Angew Chem Int Ed Engl ; 62(44): e202309869, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37610293

RESUMEN

DNA nanotubes (NTs) have attracted extensive interest as artificial cytoskeletons for biomedical, synthetic biology, and materials applications. Here, we report the modular design and assembly of a minimalist yet robust DNA wireframe nanotube with tunable cross-sectional geometry, cavity size, chirality, and length, while using only four DNA strands. We introduce an h-motif structure incorporating double-crossover (DX) tile-like DNA edges to achieve structural rigidity and provide efficient self-assembly of h-motif-based DNA nanotube (H-NT) units, thus producing programmable, micrometer-long nanotubes. We demonstrate control of the H-NT nanotube length via short DNA modulators. Finally, we use an enzyme, RNase H, to take these structures out of equilibrium and trigger nanotube assembly at a physiologically relevant temperature, underlining future cellular applications. The minimalist H-NTs can assemble at near-physiological salt conditions and will serve as an easily synthesized, DNA-economical modular template for biosensors, plasmonics, or other functional materials and as cost-efficient drug-delivery vehicles for biomedical applications.


Asunto(s)
Técnicas Biosensibles , Nanotubos , Nanotecnología , Nanotubos/química , ADN/química , Replicación del ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA