Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Image Anal ; 95: 103159, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663318

RESUMEN

We have developed a United framework that integrates three self-supervised learning (SSL) ingredients (discriminative, restorative, and adversarial learning), enabling collaborative learning among the three learning ingredients and yielding three transferable components: a discriminative encoder, a restorative decoder, and an adversary encoder. To leverage this collaboration, we redesigned nine prominent self-supervised methods, including Rotation, Jigsaw, Rubik's Cube, Deep Clustering, TransVW, MoCo, BYOL, PCRL, and Swin UNETR, and augmented each with its missing components in a United framework for 3D medical imaging. However, such a United framework increases model complexity, making 3D pretraining difficult. To overcome this difficulty, we propose stepwise incremental pretraining, a strategy that unifies the pretraining, in which a discriminative encoder is first trained via discriminative learning, the pretrained discriminative encoder is then attached to a restorative decoder, forming a skip-connected encoder-decoder, for further joint discriminative and restorative learning. Last, the pretrained encoder-decoder is associated with an adversarial encoder for final full discriminative, restorative, and adversarial learning. Our extensive experiments demonstrate that the stepwise incremental pretraining stabilizes United models pretraining, resulting in significant performance gains and annotation cost reduction via transfer learning in six target tasks, ranging from classification to segmentation, across diseases, organs, datasets, and modalities. This performance improvement is attributed to the synergy of the three SSL ingredients in our United framework unleashed through stepwise incremental pretraining. Our codes and pretrained models are available at GitHub.com/JLiangLab/StepwisePretraining.


Asunto(s)
Imagenología Tridimensional , Aprendizaje Automático Supervisado , Humanos , Imagenología Tridimensional/métodos , Algoritmos
2.
Med Image Anal ; 91: 102988, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924750

RESUMEN

Pulmonary Embolism (PE) represents a thrombus ("blood clot"), usually originating from a lower extremity vein, that travels to the blood vessels in the lung, causing vascular obstruction and in some patients death. This disorder is commonly diagnosed using Computed Tomography Pulmonary Angiography (CTPA). Deep learning holds great promise for the Computer-aided Diagnosis (CAD) of PE. However, numerous deep learning methods, such as Convolutional Neural Networks (CNN) and Transformer-based models, exist for a given task, causing great confusion regarding the development of CAD systems for PE. To address this confusion, we present a comprehensive analysis of competing deep learning methods applicable to PE diagnosis based on four datasets. First, we use the RSNA PE dataset, which includes (weak) slice-level and exam-level labels, for PE classification and diagnosis, respectively. At the slice level, we compare CNNs with the Vision Transformer (ViT) and the Swin Transformer. We also investigate the impact of self-supervised versus (fully) supervised ImageNet pre-training, and transfer learning over training models from scratch. Additionally, at the exam level, we compare sequence model learning with our proposed transformer-based architecture, Embedding-based ViT (E-ViT). For the second and third datasets, we utilize the CAD-PE Challenge Dataset and Ferdowsi University of Mashad's PE Dataset, where we convert (strong) clot-level masks into slice-level annotations to evaluate the optimal CNN model for slice-level PE classification. Finally, we use our in-house PE-CAD dataset, which contains (strong) clot-level masks. Here, we investigate the impact of our vessel-oriented image representations and self-supervised pre-training on PE false positive reduction at the clot level across image dimensions (2D, 2.5D, and 3D). Our experiments show that (1) transfer learning boosts performance despite differences between photographic images and CTPA scans; (2) self-supervised pre-training can surpass (fully) supervised pre-training; (3) transformer-based models demonstrate comparable performance but slower convergence compared with CNNs for slice-level PE classification; (4) model trained on the RSNA PE dataset demonstrates promising performance when tested on unseen datasets for slice-level PE classification; (5) our E-ViT framework excels in handling variable numbers of slices and outperforms sequence model learning for exam-level diagnosis; and (6) vessel-oriented image representation and self-supervised pre-training both enhance performance for PE false positive reduction across image dimensions. Our optimal approach surpasses state-of-the-art results on the RSNA PE dataset, enhancing AUC by 0.62% (slice-level) and 2.22% (exam-level). On our in-house PE-CAD dataset, 3D vessel-oriented images improve performance from 80.07% to 91.35%, a remarkable 11% gain. Codes are available at GitHub.com/JLiangLab/CAD_PE.


Asunto(s)
Diagnóstico por Computador , Embolia Pulmonar , Humanos , Diagnóstico por Computador/métodos , Redes Neurales de la Computación , Imagenología Tridimensional , Embolia Pulmonar/diagnóstico por imagen , Computadores
3.
Domain Adapt Represent Transf (2022) ; 13542: 77-87, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36507898

RESUMEN

Vision transformer-based self-supervised learning (SSL) approaches have recently shown substantial success in learning visual representations from unannotated photographic images. However, their acceptance in medical imaging is still lukewarm, due to the significant discrepancy between medical and photographic images. Consequently, we propose POPAR (patch order prediction and appearance recovery), a novel vision transformer-based self-supervised learning framework for chest X-ray images. POPAR leverages the benefits of vision transformers and unique properties of medical imaging, aiming to simultaneously learn patch-wise high-level contextual features by correcting shuffled patch orders and fine-grained features by recovering patch appearance. We transfer POPAR pretrained models to diverse downstream tasks. The experiment results suggest that (1) POPAR outperforms state-of-the-art (SoTA) self-supervised models with vision transformer backbone; (2) POPAR achieves significantly better performance over all three SoTA contrastive learning methods; and (3) POPAR also outperforms fully-supervised pretrained models across architectures. In addition, our ablation study suggests that to achieve better performance on medical imaging tasks, both fine-grained and global contextual features are preferred. All code and models are available at GitHub.com/JLiangLab/POPAR.

4.
Mach Learn Med Imaging ; 12966: 692-702, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35695860

RESUMEN

Pulmonary embolism (PE) represents a thrombus ("blood clot"), usually originating from a lower extremity vein, that travels to the blood vessels in the lung, causing vascular obstruction and in some patients, death. This disorder is commonly diagnosed using CT pulmonary angiography (CTPA). Deep learning holds great promise for the computer-aided CTPA diagnosis (CAD) of PE. However, numerous competing methods for a given task in the deep learning literature exist, causing great confusion regarding the development of a CAD PE system. To address this confusion, we present a comprehensive analysis of competing deep learning methods applicable to PE diagnosis using CTPA at the both image and exam levels. At the image level, we compare convolutional neural networks (CNNs) with vision transformers, and contrast self-supervised learning (SSL) with supervised learning, followed by an evaluation of transfer learning compared with training from scratch. At the exam level, we focus on comparing conventional classification (CC) with multiple instance learning (MIL). Our extensive experiments consistently show: (1) transfer learning consistently boosts performance despite differences between natural images and CT scans, (2) transfer learning with SSL surpasses its supervised counterparts; (3) CNNs outperform vision transformers, which otherwise show satisfactory performance; and (4) CC is, surprisingly, superior to MIL. Compared with the state of the art, our optimal approach provides an AUC gain of 0.2% and 1.05% for image-level and exam-level, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA