RESUMEN
An on-line scandium preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry associated with flow injection was studied. Trace amounts of scandium were preconcentrated by sorption on a minicolumn packed with oxidized multiwalled carbon nanotubes, at pH 1.5. The retained analyte was removed from the minicolumn with 30% (v/v) nitric acid. A total enrichment factor of 225-fold was obtained within a preconcentration time of 300 s (for a 25 mL sample volume). The overall time required for preconcentration and elution of 25 mL of sample was about 6 min; the throughput was about 10 samples per hour. The value of the detection limit was 4 ng L(-1) and the precision for 10 replicate determinations at 100 ng L(-1) Sc level was 5% relative standard deviation, calculated from the peak heights obtained. The calibration graph using the preconcentration system was linear with a correlation coefficient of 0.9996 at levels near the detection limits up to at least 10 mg L(-1). After optimization, the method was successfully applied to the determination of Sc in an acid drainage from an abandoned mine located in the province of San Luis, Argentina.
Asunto(s)
Análisis de Inyección de Flujo/métodos , Minería , Nanotubos de Carbono/química , Escandio/análisis , Espectrofotometría Atómica/métodos , Ácidos/química , Argentina , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Reproducibilidad de los Resultados , Escandio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisisRESUMEN
Monitoring carnitine and acetylcarnitine levels in biological fluids is a powerful tool for diagnostic studies. Research has recently shown that the analysis of carnitine and related compounds in clinical samples can be accomplished by different analytical approaches. Because of the polar and ionic nature of the analytes and matrix complexity, accurate quantitation is a highly challenging task. Thus, sample processing factors, preparation/cleanup procedures, and chromatographic/ionization/detection parameters were evaluated. On the basis of the results obtained, a rapid, selective, sensitive method based on hydrophilic interaction liquid chromatography-tandem mass spectrometry for the analysis of carnitine and acetylcarnitine in serum and urine samples is proposed. The matrix effect was assessed. The proposed approach was validated, the limits of detection were in the nanomolar range, and carnitine and acetylcarnitine levels were found within the micromolar range in both types of sample.