Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38006152

RESUMEN

Neat polyimide films are known to be dense and rigid. They are therefore not suitable for use in membranes, sensors and sustainable energy storage applications. In this study, a novel technique has been used to simultaneously improve the porosity, rigidity, damping ability and impact resistance of polyimide membranes. It is demonstrated that dispersion of a small amount of polyaniline copolymer-modified clay of about 0.25-0.5 wt.% into the polyimide matrix resulted in an enhanced storage modulus while maintaining high damping ability and glass transition temperature, Tg. Novel polyimide/substituted polyaniline-copolymer-clay nanocomposite membranes containing poly(N-ethyl-aniline-co-aniline-2-sulfonic-acid)-modified-clay (SPNEAC) was successfully prepared and incorporated into the polyimide matrix to form modified clay/polyimide nanocomposites. UV-Vis analysis of the nanocomposite films shows that the optical transparency of the SPNEAC-PI nanocomposite membranes decreased with increasing SPNEAC concentration due to the high UV-Vis absorption of SPNEAC. Transmittance of about 3% was observed in the nanocomposite membrane containing 5 wt.% modified clay at 500 nm wavelength, which is significantly lower than that for the neat PI membrane of about 36%. The dispersion of SPNEAC containing a high concentration of clay (≥40 wt.% clay), in polyimide matrix, resulted in the attainment of a higher degree of imidization than was possible for the organoclay/polyimide nanocomposite. This behavior is believed to be due to the synergistic interaction between PI and SPNEAC. A correlation of the morphology and elastic modulus of the SPNEAC2/PI nanocomposites shows that at low loading of SPNEAC 2 ≤ 0.5 wt.%, the cross-sectional morphology of the composite is an open, spiky, weblike structure with a storage modulus of about 1 GPa, but it progressively evolves into densely packed microspheroids with storage moduli of ≥2 GPa at 10 wt.% SPNEAC2. The impact energy of SPNEAC/PI composites, calculated from the α-transition peak area, increased with increasing SPNEAC loading and were about 4 times that of neat PI at 10 wt.% SPNEAC.

2.
Polymers (Basel) ; 15(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37050281

RESUMEN

Smart coatings and smart polymers have been garnering great interest in recent times due to their novel characteristics, such as being self-restoring, self-cleaning, and self-healing. However, most self-healing materials have a low glass transition temperature (Tg) and are inadequate for the repair of advanced composites. Because of their low Tg, the conventional self-healing materials plasticize and weaken the composites. In this study, moderate to high temperature self-healing microcapsules, capable of healing and thus stopping crack propagation, are prepared. The microcapsules were prepared using a two-step process involving the synthesis of poly(urea formaldehyde) (PUF) prepolymer, followed by the encapsulation of hexamethylene diisocyanate (HDI) in an oil-in-water emulsion to form a crosslinked PUF shell. Diisocyanates are of particular interest as self-healing encapsulants because of their diversity of structure and fast rate of hydrolysis. Successful encapsulation was verified by Fourier transform infrared spectroscopy (FTIR) and optical microscopy. Thermogravimetric analysis (TGA) was used to characterize the thermal properties of microcapsules. The onset temperature for microcapsule degradation varied from 155 °C to 195 °C. Dynamic mechanical analysis (DMA) was used to determine the thermomechanical response of microcapsule/epoxy films. DMA showed that the glass transition temperature (Tg) of the epoxy/microcapsule composite was greater than the Tg for neat epoxy and varied between 34 and 65 °C. The TGA analysis of the epoxy/microcapsule composite shows that the thermal stability and char retention of the epoxy/microcapsule composite increased and the low temperature decomposition peak at 150 °C, associated with the microcapsule, disappeared after the DMA test, indicating the occurrence of a reaction between HDI and the epoxy to form a crosslinked polyurea network structure.

3.
Polymers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36679180

RESUMEN

Polyimide matrix nanocomposites have gained more attention in recent years due to their high thermal stability, good interfacial bonding, light weight, and good wear resistance and corrosion, factors that make them find great applications in the field of aerospace and advanced equipment. Many advancements have been made in improving the thermal, mechanical, and wear properties of polyimide nanocomposites. The use of nanofillers such as carbon nanotubes, graphene, graphene oxide, clay, and alumina has been studied. Some challenges with nanofillers are dispersion in the polymer matrix and interfacial adhesion; this has led to surface modification of the fillers. In this study, the interaction between clay and graphene to enhance the thermal and thermal-oxidative stability of a nanocomposite was studied. A polyimide/graphene nanocomposite containing ~12.48 vol.% graphene was used as the base nanocomposite, into which varying amounts of clay were added (0.45-9 vol.% clay). Thermogravimetric studies of the nitrogen and air atmospheres showed an improvement in thermal decomposition temperature by up to 50 °C. The presence of both fillers leads to increased restriction in the mobility of polymer chains, and thus assists in char formation. It was observed that the presence of clay led to higher decomposition temperatures of the char formed in air atmosphere (up to 80 °C higher). This led to the conclusion that clay interacts with graphene in a synergistic manner, hence improving the overall stability of the polyimide/graphene/clay nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA