Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Kidney J ; 17(9): sfae259, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39301271

RESUMEN

Background: Dialysis modalities and their various treatment schedules result from complex compromises ('trade-offs') between medical, financial, technological, ergonomic, and ecological factors. This study targets summarizing the mutual influence of these trade-offs on (trans)portable, wearable, or even (partially) implantable haemodialysis (HD) systems, identify what systems are in development, and how they might improve quality of life (QoL) for patients with kidney failure. Methods: HD as defined by international standard IEC 60601-2-16 was applied on a PUBMED database query regarding (trans)portable, wearable, and (partly) implantable HD systems. Out of 159 search results, 24 were included and scanned for specific HD devices and/or HD systems in development. Additional information about weight, size, and development status was collected by the internet and/or contacting manufacturers. International airplane hand baggage criteria formed the boundary between transportable and portable. Technology readiness levels (TRLs) were assigned by combining TRL scales from the European Union and NATO medical staff. Results: The query revealed 13 devices/projects: seven transportable (six TRL9, one TRL5); two portable (one TRL6-7, one TRL4); two wearable (one TRL6, one frozen); and two partly implantable (one TRL4-5, one TRL2-3). Discussion: Three main categories of technical approaches were distinguished: single-pass, dialysate regenerating, and implantable HD filter with extracorporeal dialysate regeneration (in climbing order of mobility). Conclusions: Kidneys facilitate mobility by excreting strongly concentrated waste solutes with minimal water loss. Mimicking this kidney function can increase HD system mobility. Dialysate-regenerating HD systems are enablers for portability/wearability and, combined with durable implantable HD filters (once available), they may enable HD without needles or intravascular catheters. However, lack of funding severely hampers progress.

2.
Exp Brain Res ; 242(3): 685-725, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253934

RESUMEN

Users of automated vehicles will engage in other activities and take their eyes off the road, making them prone to motion sickness. To resolve this, the current paper validates models predicting sickness in response to motion and visual conditions. We validate published models of vestibular and visual sensory integration that have been used for predicting motion sickness through sensory conflict. We use naturalistic driving data and laboratory motion (and vection) paradigms, such as sinusoidal translation and rotation at different frequencies, Earth-Vertical Axis Rotation, Off-Vertical Axis Rotation, Centrifugation, Somatogravic Illusion, and Pseudo-Coriolis, to evaluate different models for both motion perception and motion sickness. We investigate the effects of visual motion perception in terms of rotational velocity (visual flow) and verticality. According to our findings, the SVCI model, a 6DOF model based on the Subjective Vertical Conflict (SVC) theory, with visual rotational velocity input is effective at estimating motion sickness. However, it does not correctly replicate motion perception in paradigms such as roll-tilt perception during centrifuge, pitch perception during somatogravic illusion, and pitch perception during pseudo-Coriolis motions. On the other hand, the Multi-Sensory Observer Model (MSOM) accurately models motion perception in all considered paradigms, but does not effectively capture the frequency sensitivity of motion sickness, and the effects of vision on sickness. For both models (SVCI and MSOM), the visual perception of rotational velocity strongly affects sickness and perception. Visual verticality perception does not (yet) contribute to sickness prediction, and contributes to perception prediction only for the somatogravic illusion. In conclusion, the SVCI model with visual rotation velocity feedback is the current preferred option to design vehicle control algorithms for motion sickness reduction, while the MSOM best predicts perception. A unified model that jointly captures perception and motion sickness remains to be developed.


Asunto(s)
Ilusiones , Percepción de Movimiento , Mareo por Movimiento , Humanos , Percepción de Movimiento/fisiología , Percepción Espacial/fisiología , Rotación
3.
Biol Cybern ; 117(3): 185-209, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36971844

RESUMEN

The human motion perception system has long been linked to motion sickness through state estimation conflict terms. However, to date, the extent to which available perception models are able to predict motion sickness, or which of the employed perceptual mechanisms are of most relevance to sickness prediction, has not been studied. In this study, the subjective vertical model, the multi-sensory observer model and the probabilistic particle filter model were all validated for their ability to predict motion perception and sickness, across a large set of motion paradigms of varying complexity from literature. It was found that even though the models provided a good match for the perception paradigms studied, they could not be made to capture the full range of motion sickness observations. The resolution of the gravito-inertial ambiguity has been identified to require further attention, as key model parameters selected to match perception data did not optimally match motion sickness data. Two additional mechanisms that may enable better future predictive models of sickness have, however, been identified. Firstly, active estimation of the magnitude of gravity appears to be instrumental for predicting motion sickness induced by vertical accelerations. Secondly, the model analysis showed that the influence of the semicircular canals on the somatogravic effect may explain the differences in the dynamics observed for motion sickness induced by vertical and horizontal plane accelerations.


Asunto(s)
Percepción de Movimiento , Mareo por Movimiento , Humanos , Mareo por Movimiento/diagnóstico , Movimiento (Física) , Canales Semicirculares , Gravitación
4.
Appl Ergon ; 106: 103881, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36058166

RESUMEN

A prime concern for automated vehicles is motion comfort, as an uncomfortable ride may reduce acceptance of the technology amongst the general population. However, it is not clear how transient motions typical for travelling by car affect the experience of comfort. Here, we determine the relation between properties of vehicle motions (i.e., acceleration and jerk) and discomfort empirically, and we evaluate the ability of normative models to account for the data. 23 participants were placed in a moving-base driving simulator and presented sinusoidial and triangular motion pulses with various peak accelerations (Amax0.4 - 2 ms-2) and jerks (Jmax0.5 - 15 ms-3), designed to recreate typical vehicle accelerations. Participants provided discomfort judgments on absolute 'Verbal Qualifiers' and relative 'Magnitude Estimates' associated with these motions. The data show that discomfort increases with acceleration amplitude, and that the strength of this effect depends on the direction of motion. We furthermore find that higher jerks (shorter duration pulses) are considered more comfortable, and that triangular pulses are more comfortable than sinusoidal pulses. ME responses decrease (i.e., reduced discomfort) with increasing pulse duration. Evaluations of normative models of vibration and shock (ISO 2631), and perceived motion intensity provide mixed results. The vibration model could not account for the data well. Reasonable agreement between predictions and observations were found for the shock model and perceived intensity model, which emphasize the role of acceleration. We present novel statistical models that describe motion comfort as a function of acceleration, jerk, and direction. The present findings are essential to develop motion planning algorithms aimed at maximizing comfort.


Asunto(s)
Conducción de Automóvil , Vehículos Autónomos , Humanos , Aceleración , Movimiento (Física) , Vibración
5.
Front Syst Neurosci ; 16: 866503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615427

RESUMEN

The relationship between the amplitude of motion and the accumulation of motion sickness in time is unclear. Here, we investigated this relationship at the individual and group level. Seventeen participants were exposed to four oscillatory motion stimuli, in four separate sessions, separated by at least 1 week to prevent habituation. Motion amplitude was varied between sessions at either 1, 1.5, 2, or 2.5 ms-2. Time evolution was evaluated within sessions applying: an initial motion phase for up to 60 min, a 10-min rest, a second motion phase up to 30 min to quantify hypersensitivity and lastly, a 5-min rest. At both the individual and the group level, motion sickness severity (MISC) increased linearly with respect to acceleration amplitude. To analyze the evolution of sickness over time, we evaluated three variations of the Oman model of nausea. We found that the slow (502 s) and fast (66.2 s) time constants of motion sickness were independent of motion amplitude, but varied considerably between individuals (slow STD = 838 s; fast STD = 79.4 s). We also found that the Oman model with output scaling following a power law with an exponent of 0.4 described our data much better as compared to the exponent of 2 proposed by Oman. Lastly, we showed that the sickness forecasting accuracy of the Oman model depended significantly on whether the participants had divergent or convergent sickness dynamics. These findings have methodological implications for pre-experiment participant screening, as well as online tuning of automated vehicle algorithms based on sickness susceptibility.

6.
Exp Brain Res ; 240(4): 1231-1240, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35192043

RESUMEN

High levels of vehicle automation are expected to increase the risk of motion sickness, which is a major detriment to driving comfort. The exact relation between motion sickness and discomfort is a matter of debate, with recent studies suggesting a relief of discomfort at the onset of nausea. In this study, we investigate whether discomfort increases monotonously with motion sickness and how the relation can best be characterized in a semantic experiment (Experiment 1) and a motion sickness experiment (Experiment 2). In Experiment 1, 15 participants performed pairwise comparisons on the subjective discomfort associated with each item on the popular MIsery SCale (MISC) of motion sickness. In Experiment 2, 17 participants rated motion sickness using the MISC during exposures to four sustained motion stimuli, and provided (1) numerical magnitude estimates of the discomfort experienced for each level of the MISC, and (2) verbal magnitude estimates with seven qualifiers, ranging between feeling 'excellent' and 'terrible'. The data of Experiment 1 show that the items of the MISC are ranked in order of appearance, with the exception of 5 ('severe dizziness, warmth, headache, stomach awareness, and sweating') and 6 ('slight nausea'), which are ranked in opposite order. However, in Experiment 2, we find that discomfort associated with each level of the MISC, as it was used to express motion sickness during exposure to a sickening stimulus, increases monotonously; following a power law with an exponent of 1.206. While the results of Experiment 1 replicate the non-linearity found in recent studies, the results of Experiment 2 suggest that the non-linearity is due to the semantic nature of Experiment 1, and that there is a positive monotonous relation between MISC and discomfort in practice. These results support the suitability of MISC to assess motion sickness.


Asunto(s)
Conducción de Automóvil , Mareo por Movimiento , Humanos , Movimiento (Física) , Mareo por Movimiento/etiología , Náusea/etiología
7.
Exp Brain Res ; 239(6): 1727-1745, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33779793

RESUMEN

Previous literature suggests a relationship between individual characteristics of motion perception and the peak frequency of motion sickness sensitivity. Here, we used well-established paradigms to relate motion perception and motion sickness on an individual level. We recruited 23 participants to complete a two-part experiment. In the first part, we determined individual velocity storage time constants from perceived rotation in response to Earth Vertical Axis Rotation (EVAR) and subjective vertical time constants from perceived tilt in response to centrifugation. The cross-over frequency for resolution of the gravito-inertial ambiguity was derived from our data using the Multi Sensory Observer Model (MSOM). In the second part of the experiment, we determined individual motion sickness frequency responses. Participants were exposed to 30-minute sinusoidal fore-aft motions at frequencies of 0.15, 0.2, 0.3, 0.4 and 0.5 Hz, with a peak amplitude of 2 m/s2 in five separate sessions, approximately 1 week apart. Sickness responses were recorded using both the MIsery SCale (MISC) with 30 s intervals, and the Motion Sickness Assessment Questionnaire (MSAQ) at the end of the motion exposure. The average velocity storage and subjective vertical time constants were 17.2 s (STD = 6.8 s) and 9.2 s (STD = 7.17 s). The average cross-over frequency was 0.21 Hz (STD = 0.10 Hz). At the group level, there was no significant effect of frequency on motion sickness. However, considerable individual variability was observed in frequency sensitivities, with some participants being particularly sensitive to the lowest frequencies, whereas others were most sensitive to intermediate or higher frequencies. The frequency of peak sensitivity did not correlate with the velocity storage time constant (r = 0.32, p = 0.26) or the subjective vertical time constant (r = - 0.37, p = 0.29). Our prediction of a significant correlation between cross-over frequency and frequency sensitivity was not confirmed (r = 0.26, p = 0.44). However, we did observe a strong positive correlation between the subjective vertical time constant and general motion sickness sensitivity (r = 0.74, p = 0.0006). We conclude that frequency sensitivity is best considered a property unique to the individual. This has important consequences for existing models of motion sickness, which were fitted to group averaged sensitivities. The correlation between the subjective vertical time constant and motion sickness sensitivity supports the importance of verticality perception during exposure to translational sickness stimuli.


Asunto(s)
Percepción de Movimiento , Mareo por Movimiento , Humanos , Movimiento (Física) , Rotación , Percepción Espacial
8.
Exp Brain Res ; 239(2): 515-531, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33249541

RESUMEN

We investigated and modeled the temporal evolution of motion sickness in a highly dynamic sickening drive. Slalom maneuvers were performed in a passenger vehicle, resulting in lateral accelerations of 0.4 g at 0.2 Hz, to which participants were subjected as passengers for up to 30 min. Subjective motion sickness was recorded throughout the sickening drive using the MISC scale. In addition, physiological and postural responses were evaluated by recording head roll, galvanic skin response (GSR) and electrocardiography (ECG). Experiment 1 compared external vision (normal view through front and side car windows) to internal vision (obscured view through front and side windows). Experiment 2 tested hypersensitivity with a second exposure a few minutes after the first drive and tested repeatability of individuals' sickness responses by measuring these two exposures three times in three successive sessions. An adapted form of Oman's model of nausea was used to quantify sickness development, repeatability, and motion sickness hypersensitivity at an individual level. Internal vision was more sickening compared to external vision with a higher mean MISC (4.2 vs. 2.3), a higher MISC rate (0.59 vs. 0.10 min-1) and more dropouts (66% vs. 33%) for whom the experiment was terminated due to reaching a MISC level of 7 (moderate nausea). The adapted Oman model successfully captured the development of sickness, with a mean model error, including the decay during rest and hypersensitivity upon further exposure, of 11.3%. Importantly, we note that knowledge of an individuals' previous motion sickness response to sickening stimuli increases individual modeling accuracy by a factor of 2 when compared to group-based modeling, indicating individual repeatability. Head roll did not vary significantly with motion sickness. ECG varied slightly with motion sickness and time. GSR clearly varied with motion sickness, where the tonic and phasic GSR increased 42.5% and 90%, respectively, above baseline at high MISC levels, but GSR also increased in time independent of motion sickness, accompanied with substantial scatter.


Asunto(s)
Mareo por Movimiento , Respuesta Galvánica de la Piel , Cabeza , Humanos , Náusea/etiología , Visión Ocular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA