Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(13): e34092, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071627

RESUMEN

The microbiota-gut-brain axis (MGBA) represents a sophisticated communication network between the brain and the gut, involving immunological, endocrinological, and neural mediators. This bidirectional interaction is facilitated through the vagus nerve, sympathetic and parasympathetic fibers, and is regulated by the hypothalamic-pituitary-adrenal (HPA) axis. Evidence shows that alterations in gut microbiota composition, or dysbiosis, significantly impact neurological disorders (NDs) like anxiety, depression, autism, Parkinson's disease (PD), and Alzheimer's disease (AD). Dysbiosis can affect the central nervous system (CNS) via neuroinflammation and microglial activation, highlighting the importance of the microbiota-gut-brain axis (MGBA) in disease pathogenesis. The microbiota influences the immune system by modulating chemokines and cytokines, impacting neuronal health. Synbiotics have shown promise in treating NDs by enhancing cognitive function and reducing inflammation. The gut microbiota's role in producing neurotransmitters and neuroactive compounds, such as short-chain fatty acids (SCFAs), is critical for CNS homeostasis. Therapeutic interventions targeting the MGBA, including dietary modulation and synbiotic supplementation, offer potential benefits for managing neurodegenerative disorders. However, more in-depth clinical studies are necessary to fully understand and harness the therapeutic potential of the MGBA in neurological health and disease.

2.
In Silico Pharmacol ; 12(1): 41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716440

RESUMEN

Genes related to MAPK-ERK signaling pathways, and epithelial-mesenchymal transition induction is evolutionarily conserved and has crucial roles in the regulation of important cellular processes, including cell proliferation. In this study, six cannabinoids from Cannabis sativa were docked with MAPK-ERK signaling pathways to identify their possible binding interactions. The results showed that all the cannabinoids have good binding affinities with the target proteins. The best binding affinities were MEK- tetrahydrocannabinol (- 8.8 kcal/mol) and P13k-cannabinol (- 8.5 kcal/mol). The root mean square deviation was calculated and used two alternative variants (rmsd/ub and rmsd/lb) and the values of rmsd/lb fluctuated 8.6-2.0 Å and for rmsd/ub from 1.0 to 2.0 Å that suggests the cannabinoids and protein complex are accurate and cannot destroy on binding. The study analyzed the pharmacokinetic and drug-likeness properties of six cannabinoids from C. sativa leaves using the SwissADME web tool. Lipinski's rule of five was used to predict drug-likeness and showed that all compounds have not violated it and the total polar surface area of cannabinoids was also according to Lipinski's rule that is benchmarked of anticancer drugs. Cannabinoids are meet the requirements of leadlikeness and synthetic accessibility values showed they can be synthesized. The molecular weight, XLOGP3, solubility (log S), and flexibility (FLEX) are according to the bioavailability radar. The bioavailability score and consensus Log Po/w fall within the acceptable range for the suitable drug. Pharmacokinetics parameters showed that cannabinoids cannot cross the blood-brain barrier, have high GI absorption as well as cannabinoids are substrates of (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4) but no substrate of P-glycoprotein. Based on these findings, the study suggests that cannabinoids are suitable drugs that could be used as effective inhibitors for target proteins involved in cancer pathways. Among the six cannabinoids, cannabinol and tetrahydrocannabinol exerted maximum binding affinities with proteins of MAPK-ERK signaling pathways, and their pharmacokinetics and drug-likeness-related profiles suggest that these cannabinoids could be superlative inhibitors in cancer treatment. Further in vitro, in vivo, and clinical studies are needed to explore their potential in cancer treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00213-4.

3.
Cardiovasc Toxicol ; 23(9-10): 295-304, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37676618

RESUMEN

Thiazolidinediones are useful antidiabetic medications. However, their use is associated with adverse side effects like edema, heart failure and bone fractures. In this study, we investigated the anti-ferroptosis effects of suberosin (SBR; a prenylated coumarin) in diabetic Sprague Dawley rats. Further, we assessed the effects of co-administration of SBR (30 and 90 mg/kg/day) with thiazolidinedione (TZ at 15 mg/kg) to mitigate TZ-induced cardiomyopathy in diabetic rats. Our results showed that cardiac output, stroke volume, left ventricle systolic and diastolic pressures were aggravated in diabetic rats treated with TZ alone after 4 weeks. TZ treatments induced ferroptosis as well as marked histoarchitecture disarrangements in rat cardiomyocytes. The study found that optimizing volume overload alleviated cardiac hypertrophy and mitigated left ventricular dysfunction in diabetic rats co-treated with SBR. SBR co-administration with TZ reduced MDA levels in heart tissue and serum iron concentration (biomarkers of ferroptosis), downregulated mRNA expressions of LOX, ACSL4, LPCAT3, and promoted GPX4 activity as well as upregulated mRNA levels of AKT/PI3K/GSK3ß as compared to the group administered with TZ at 15 mg/kg. SBR co-administration also helped to retain the normal histoarchitecture of cardiomyocytes in diabetic rats. Hence, our results suggested that SBR is an effective supplement and could be prescribed to diabetic patients along with TZ but this requires further clinical trials.


Asunto(s)
Cardiomiopatías , Diabetes Mellitus Experimental , Tiazolidinedionas , Humanos , Ratas , Animales , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas Sprague-Dawley , Cardiomiopatías/inducido químicamente , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/prevención & control , Cumarinas , Transducción de Señal , 1-Acilglicerofosfocolina O-Aciltransferasa
4.
Hum Exp Toxicol ; 42: 9603271231178015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212426

RESUMEN

Acute lung injury (ALI) is a heterogeneous pulmonary illness that is fast developing and has a high fatality rate. The current investigation set out to interpret the convergence of oxidative stress, inflammatory cytokines, TNF-α, snail, vimentin, e-cadherin, and NF-kB activation in ALI pathology. The outcome of assays of oxidative stress, ELISA, and western blot showed the declined of CAT, SOD, GPx, IL-1ß, TNF-α, and upregulation of TGF-ß, smad2/3, smad4, NF-kB, snail, and vimentin, concurrently with downregulation of e-cadherin expression in lung tissues as well as BALF in LPS-injected rats. The photomicrographs of the lungs marked severe congestion, infiltration of cytokines, and thickening of the alveolar walls. Pretreatments of ergothioneine after LPS-induced ALI, inhibited EMT-induction by blocking TGF-ß, smad2/3, smad4, snail, vimentin, NF-kB, and inflammatory cytokines, and increased the expression of E-cadherin and antioxidant levels in a dose-dependent manner. These events helped to restore lung histoarchitecture and reduce acute lung injury. The present findings suggest that ergothioneine at 100 mg/kg is as effective as febuxostat (reference drug). The study concluded that ergothioneine may be replaced with febuxostat as a treatment option for ALI owing to its side effects after clinical trials for pharmaceutical purposes.


Asunto(s)
Lesión Pulmonar Aguda , Ergotioneína , Animales , Ratas , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Cadherinas/metabolismo , Citocinas/metabolismo , Ergotioneína/farmacología , Febuxostat/farmacología , Lipopolisacáridos/toxicidad , Pulmón/patología , FN-kappa B/metabolismo , Estrés Oxidativo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vimentina/metabolismo
5.
Environ Sci Pollut Res Int ; 30(22): 62237-62248, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940025

RESUMEN

Paraquat (PQ) is an organic compound, which is commonly used as a herbicide in the agriculture sector, and it is also known to stimulate critical damages in the male reproductive system. Gossypetin (GPTN) is one of important members of the flavonoid family, which is an essential compound in flowers and calyx of Hibiscus sabdariffa with potential pharmacological properties. The current investigation was aimed to examine the ameliorative potential of GPTN against PQ-instigated testicular damages. Adult male Sprague-Dawley rats (n = 48) were distributed into four groups: control, PQ (5 mg/kg), PQ + GPTN (5 mg/kg + 30 mg/kg respectively), and GPTN (30 mg/kg). After 56 days of treatment, biochemical, spermatogenic indices, hormonal, steroidogenic, pro-or-anti-apoptotic, and histopathological parameters were estimated. PQ exposure disturbed the biochemical profile by reducing the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR), while it increased the concentration of reactive oxygen species (ROS) and malondialdehyde (MDA) level. Furthermore, PQ exposure decreased the sperm motility, viability, number of hypo-osmotic tail swelled spermatozoa, and epididymal sperm count; additionally, it increased sperm morphological (head mid-piece and tail) abnormalities. Moreover, PQ lessened the follicle-stimulating hormone (FSH), luteinizing hormone (LH), and plasma testosterone levels. Besides, PQ-intoxication downregulated the gene expression of steroidogenic enzymes (StAR, 3ß-HSD, and 17ß-HSD) and anti-apoptotic marker (Bcl-2), whereas upregulated the gene expression of apoptotic markers (Bax and Caspase-3). PQ exposure led to histopathological damages in testicular tissues as well. Nonetheless, GPTN inverted all the illustrated impairments in testes. Taken together, GPTN could potently ameliorate PQ-induced reproductive dysfunctions due to its antioxidant, androgenic, and anti-apoptotic potential.


Asunto(s)
Paraquat , Testículo , Ratas , Masculino , Animales , Paraquat/toxicidad , Estrés Oxidativo , Ratas Wistar , Ratas Sprague-Dawley , Motilidad Espermática , Semen/metabolismo , Antioxidantes/metabolismo , Flavonoides/farmacología , Testosterona
6.
Molecules ; 27(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36364001

RESUMEN

Polydatin or 3-O-ß-d-resveratrol-glucopyranoside (PD), a stilbenoid component of Polygonum cuspicadum (Polygonaceae), has a variety of biological roles. In traditional Chinese medicine, P. cuspicadum extracts are used for the treatment of infections, inflammation, and cardiovascular disorders. Polydatin possesses a broad range of biological activities including antioxidant, anti-inflammatory, anticancer, and hepatoprotective, neuroprotective, and immunostimulatory effects. Currently, a major proportion of the population is victimized with cervical lung cancer, ovarian cancer and breast cancer. PD has been recognized as a potent anticancer agent. PD could effectively inhibit the migration and proliferation of ovarian cancer cells, as well as the expression of the PI3K protein. The malignancy of lung cancer cells was reduced after PD treatments via targeting caspase 3, arresting cancer cells at the S phase and inhibiting NLRP3 inflammasome by downregulation of the NF-κB pathway. This ceases cell cycle, inhibits VEGF, and counteracts ROS in breast cancer. It also prevents cervical cancer by regulating epithelial-to-mesenchymal transition (EMT), apoptosis, and the C-Myc gene. The objective of this review is thus to unveil the polydatin anticancer potential for the treatment of various tumors, as well as to examine the mechanisms of action of this compound.


Asunto(s)
Neoplasias de la Mama , Estilbenos , Humanos , Femenino , Transducción de Señal , Estilbenos/farmacología , Glucósidos/farmacología
7.
Anticancer Agents Med Chem ; 22(1): 40-52, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33622231

RESUMEN

Radiations are an efficient treatment modality in cancer therapy. Besides the treatment effects of radiations, the ionizing radiations interact with biological systems and generate reactive oxygen species that interfere with the normal cellular process. Previous investigations have been conducted only on few synthetic radioprotectors, mainly owing to some limiting effects. The nutraceuticals act as efficient radioprotectors to protect the tissues from the deleterious effects of radiation. The main radioprotection mechanism of nutraceuticals is the scavenging of free radicals while other strategies involve modulation of signaling transduction pathways like MAPK (JNK, ERK1/2, ERK5, and P38), NF-kB, cytokines, and their protein regulatory gene expression. The current review is focused on the radioprotective effects of nutraceuticals including vitamin E, -C, organosulphur compounds, phenylpropanoids, and polysaccharides. These natural entities protect against radiation-induced DNA damage. The review mainly entails the antioxidant perspective and radioprotective molecular mechanism of nutraceuticals, DNA repair pathway, anti-inflammation, immunomodulatory effects and regeneration of hematopoietic cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Antioxidantes/uso terapéutico , Suplementos Dietéticos , Neoplasias/prevención & control , Animales , Humanos , Radiación Ionizante
8.
Toxicol Ind Health ; 37(10): 619-634, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34569379

RESUMEN

Nickel nanoparticles (Ni NPs) are utilized extensively in various industrial applications. However, there are increasing concerns about potential exposure to Ni NPs and consequent health effects. The aim of this study was to assess Ni NPs-induced liver toxicity in Sprague Dawley rats. Twenty-five rats were exposed to Ni NPs via intraperitoneal injection at doses of 15, 30, and 45 mg/kg per body weight for 28 days. Results from ICP-MS analysis showed an increase in the concentration of Ni NPs in a dose-dependent manner. The liver dysfunction was indicated by considerable production of ALT, AST, ALP, LDH, and TB in Ni NPs-treated rats. Histological examination demonstrated liver injuries (inflammatory cells, congestion, necrosis, and pyknosis) in exposed rats with dose-dependent severity of pathologies by semi-quantitative histograding system. To explore the toxicological pathways, we examined oxidative stress biomarkers and detected Ni NPs significantly elevated the levels of MDA and LPO while decreasing the levels of CAT and GSH. All the changes in biomarkers were recorded in a dose-dependent relationship. In addition, we found upregulated NF-kß indicating activation of inflammatory cytokines. ELISA results of serum revealed a remarkable increase of nitrative stress markers (iNOS and NO), ATPase activity, inflammatory cytokine (IL-6, IL-1ß, and TNF-α), and apoptotic mediators (caspase-3 and caspase-9) in Ni NPs-treated groups than the control. In summary, the result of this study provided evidence of hepatotoxicity of Ni NPs and insightful information about the involved toxic pathways, which will help in health risk assessment and management, related preventive measures for the use of Ni-NPs materials.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Hígado/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Níquel/toxicidad , Animales , Apoptosis/efectos de los fármacos , Biomarcadores , Relación Dosis-Respuesta a Droga , Inflamación/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley
9.
Toxicol Ind Health ; 37(10): 635-651, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34491146

RESUMEN

Nickel nanoparticles (Ni-NPs) are widely used for multiple purposes in industries. Ni-NPs exposure is detrimental to ecosystems owing to widespread use, and so their toxicity is important to consider for real-world applications. This review mainly focuses on the notable pathophysiological activities of Ni-NPs in various research models. Ni-NPs are stated to be more toxic than bulk forms because of their larger surface area to volume ratio and are reported to provoke toxicity through reactive oxygen species generation, which leads to the upregulation of nuclear factor-κB and promotes further signaling cascades. Ni-NPs may contribute to provoking oxidative stress and apoptosis. Hypoxia-inducible factor 1α and mitogen-activated protein kinases pathways are involved in Ni-NPs associated toxicity. Ni-NPs trigger the transcription factors p-p38, p-JNK, p-ERK1/2, interleukin (IL)-3, TNF-α, IL-13, Fas, Cyt c, Bax, Bid protein, caspase-3, caspase-8, and caspase-9. Moreover, Ni-NPs have an occupational vulnerability and were reported to induce lung-related disorders owing to inhalation. Ni-NPs may cause serious effects on reproduction as Ni-NPs induced deleterious effects on reproductive cells (sperm and eggs) in animal models and provoked hormonal alteration. However, recent studies have provided limited knowledge regarding the important checkpoints of signaling pathways and less focused on the toxic limitation of Ni-NPs in humans, which therefore needs to be further investigated.


Asunto(s)
Apoptosis/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Níquel/toxicidad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Pulmón/efectos de los fármacos , Exposición Profesional/efectos adversos , Reproducción/efectos de los fármacos
10.
Environ Sci Pollut Res Int ; 28(18): 22742-22757, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33423203

RESUMEN

Nonylphenol (NP) is an environmental contaminant, which induces testicular toxicity through oxidative stress. Myricetin (MYR) is a naturally occurring flavonol having powerful antioxidant activity. The current research was planned to examine the ameliorative role of MYR against NP-induced testicular damage. A total of 24 adult male Sprague-Dawley rats were randomly divided into 4 equivalent groups: control (0.1% DMSO), NP group (50 mg kg-1), NP + MYR group (50 mg kg-1; 100 mg kg-1), and MYR-treated group (100 mg kg-1). NP administration significantly (p < 0.05) decreased the activity of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR), and protein content while significantly (p < 0.05) elevating the thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) levels. Additionally, NP significantly (p < 0.05) reduced the sperm motility, gene expression of testicular steroidogenic enzymes (3ß-HSD, 3ß-hydroxysteroid dehydrogenase; 17ß-HSD, 17ß-hydroxysteroid dehydrogenase; StAR, steroidogenic-acute regulatory protein), level of luteinizing hormone (LH), follicle-stimulating hormone (FSH), plasma testosterone, and daily sperm production (DSP). On the other hand, it raised the testicular cholesterol, dead sperms, and head, midpiece, and tail abnormalities along with abnormal histomorphometry. However, MYR remarkably abrogated NP-induced damages. In conclusion, the outcomes of the study suggest that MYR can effectively alleviate the NP-induced oxidative stress and testicular damages.


Asunto(s)
Motilidad Espermática , Testículo , Animales , Antioxidantes/metabolismo , Flavonoides , Humanos , Masculino , Estrés Oxidativo , Fenoles , Ratas , Ratas Sprague-Dawley , Testículo/metabolismo , Testosterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA