Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(15): 2779-2794, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39056181

RESUMEN

Colchicine, one of the oldest anti-inflammatory natural products still used clinically, inhibits NF-κB signaling and NLRP3 inflammasome activation. Despite its cytotoxicity and narrow therapeutic range, colchicine continues to intrigue medicinal chemists exploring its anti-inflammatory potential. This study aimed to investigate the colchicine scaffold for its role in Alzheimer's disease by targeting neuroinflammation and cholinesterases. Molecular docking revealed that colchicine's hydrophobic trimethoxyphenyl framework can potentially bind to the peripheral anionic site of cholinesterases. Hybrid structures combining colchicine with aryl/alkyl amines were designed to bind both peripheral and catalytic sites of cholinesterases. We describe here the design, synthesis, and in vitro cytotoxicity evaluation of these colchicine-aryl/alkyl amine hybrids, along with their in silico interactions with the cholinesterase active site gorge. Nontoxic analogs demonstrating strong cholinesterase binding affinity were further evaluated for their anticholinesterase and antineuroinflammatory activities. The colchicine-donepezil hybrid, SBN-284 (3x), inhibited both acetylcholinesterase and butyrylcholinesterase as well as the NLRP3 inflammasome complex at low micromolar concentrations. It achieved this through noncompetitive inhibition, occupying the active site gorge and interacting with both peripheral and catalytic anionic sites of cholinesterases. Analog 3x was shown to cross the blood-brain barrier and exhibited no toxicity to neuronal cells, primary macrophages, or epithelial fR2 cells. These findings highlight the potential of this lead compound for further preclinical investigation as a promising anti-Alzheimer agent.


Asunto(s)
Inhibidores de la Colinesterasa , Colchicina , Inflamasomas , Simulación del Acoplamiento Molecular , Proteína con Dominio Pirina 3 de la Familia NLR , Colchicina/farmacología , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Animales , Inflamasomas/metabolismo , Humanos , Ratones , Aminas/farmacología , Aminas/química , Donepezilo/farmacología , Piperidinas/farmacología , Piperidinas/química
2.
ACS Med Chem Lett ; 14(12): 1716-1723, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116428

RESUMEN

Synthesis and biological evaluation of silicon-incorporated phytocannabinoids with improved pharmacological properties toward inflammatory diseases are described. The synthesized sila-analogues 15a, 15b, and 15c displayed potent inhibition of pro-inflammatory cytokines, including IL-1ß, TNF-α, and IL-6 at 10 µM. Further, the release of heme during the lysis of red blood cells in hemolytic diseases is one of the major reasons for inflammation associated with the pathophysiology of these diseases. Due to scanty literature related to inhibitors of heme-mediated induction of the NLRP3 inflammasome, we decided to test these compounds against it. Compounds 15a and 15c significantly inhibited the heme-mediated induction of the NLRP3 inflammasome at a concentration of 0.1 µM. Interestingly, the sila-CBD derivatives also showed higher metabolic stability in contrast to their carbon analogues. Anti-NLRP3 inflammasome activity of compounds 15a and 15c were further validated in vivo against heme-mediated peritoneal inflammation. The anti-inflammatory activity of these compounds could be useful in treating diseases such as sickle cell anemia and thalassemia involving the hemolysis-mediated activation of the NLRP3 inflammasome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA